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A BST R AC T  

In the paper, a model governed by a system of ordinary differential equations was considered; the 

whole population was divided into Susceptible individuals (S), Exposed individuals (E), Infected 

individuals (I), Quarantined individuals (Q) and Recovered individuals (R). The well-posedness 

of the model was investigated by the theory of positivity and boundedness. Analytically, the 

equilibrium solutions were examined. A key threshold which measures the potential spread of the 

Coronavirus in the population is derived using the next generation method. Bifurcation analysis 

and global stability of the model were carried out using centre manifold theory and Lyapunov 

functions respectively. The effects of some parameters such as Progression rate of exposed class 

to infectious class, Effective contact rate, Modification parameter, Quarantine rate of infectious 

class, Recovery rate of infectious class and Recovery rate of quarantined class on R0 were 

explored through sensitivity analysis. Numerical simulations were carried out to support the 

theoretical results, to reduce the burden of COVID 19 disease in the population the following 

parameters 1 ,  , , 1 , 2 , r , 2  and 3  play a significant in the spread of it in the population.  

Keywords: reproduction number, bifurcation analysis, Lyapunov functions. 

 

1 INTRODUCTION 

The recent outbreak of the deadly and highly infectious COVID-19 disease caused by 

SARS-CoV-2 in Wuhan and other cities in China in 2019 has become a global pandemic as 

declared by World Health Organization (WHO) in the first quarter of 2020 [3]. The 

incubation period was estimated to be 14 days (the time between the successive onset of 

symptoms in a chain of transmission) [53]. According to worldometer [4], the total number of 

cases in the world today 18th June 2020 is 8,468,941 with 3,577,610 (42.2%) in active case, 

4,439,532 (52.4%) recovered and 451,979 (5.3%) death of COVID 19. 

The traditional model for respiratory disease transmission assumes the existence of 

the infection via infectious droplets (generally 5–10 µm) which have a short lifespan in the 

air and attack the upper respiratory tract, or finer aerosols, and stays in the air for many hours 

[20], with ongoing uncertainties in the comparative standing of these modes (and in the 

conceptual model itself [21]) for SARS-CoV-2 transmission [21, 23]. The WHO [22] has 

stated that SARS-CoV-2 spreads primarily via coarse respiratory droplets and contact routes. 

An experimental study [24] using a nebulizer found SARS-CoV-2 to remain viable in 
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aerosols (<5 µm) for three hours (the study duration), but the clinical relevance of this setup 

is in question [22]. One out of three symptomatic COVID-19 patients caused widespread 

environmental contamination in [25], including of air exhaust outlets, though the air itself 

tested negative. 

The transmission dynamics of infectious diseases has been well-studied and 

researched in mathematics and usually referred to as mathematical epidemiology. 

Mathematical models have played a major role in increasing understanding, control and 

intervention of the underlying mechanisms which influence the spread of diseases [5,6,7], 

which has been a strong tool in providing deeper and better understanding on the 

transmission dynamics and burden of the current COVID-19 pandemic, having a greater 

impact on the development of public health policy, intervention and control. Majority of the 

mathematical models of the COVID-19 pandemic can broadly be divided into:- population-

based models, SIR (Kermack-McKendrick) - type models, driven by (potentially stochastic) 

differential equations [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], or agent-based models [37, 

38, 39, 40, 41], in which individuals typically interact on a network structure and exchange 

infection in a stochastic manner. 

The recent outbreak of the deadly and highly infectious COVID-19 disease has 

attracted the attention of many researchers who have studied and discussed the nature of the 

virus, its transmission dynamics and the basic reproduction number of the disease, possible 

controls, see eg. [8,9,10,11,12,13]. Recently, Elsevier and Springer have made open access to 

several literature for interested researchers [14,15]. An SEIR mathematical model for the 

transmission dynamics of COVID-19 disease with data fitting, parameter estimations and 

sensitivity analysis was studied in [9] also a deterministic model for COVID-19 that captures 

the effect of delay diagnosis on the disease transmission was presented, see [16]. In [17], the 

authors study a statistical analysis of COVID-19 disease data to estimate time-delay adjusted 

risk for death from this deadly virus in Wuhan, as well as for China excluding Wuhan. The 

study by [17] reported that effective social distancing and movement restrictions practices 

can help in reducing the disease transmission. A real-time forecast phenomenological model 

has also been formulated to examine the spread pattern of COVID-19 infectious disease, see 

e.g., [18]. In addition, an SEIR-type compartmental modelling concept applied to design a 

data-driven epidemic model that incorporates governmental actions and individual 

behavioural reactions for the COVID-19 disease outbreak in Wuhan was studied by [19]. 

Moore and Okyere [56] consider an optimal control COVID-19 transmission model 

that was used to assess the impact of some control measures that can lead to the reduction of 

exposed and infectious individuals in the population. Three control strategies were used; 

personal protection, treatment with early diagnosis, treatment with delay diagnosis and 

spraying of virus in the environment are the time-dependent control functions. Also, 

Eikenberry et al. [54] develop a compartmental model for assessing the community wide 

impact of mask use by the general, asymptomatic public, a portion of which may be 

asymptomatically infectious. Their results suggest use of face masks by the public is 

potentially of high value in curtailing community transmission and the burden of the 

pandemic. In addition, Usaini et al. [55] formulate and analyzed deterministic mathematical 

model for the transmission dynamics of Middle East Respiratory Syndrome Coronavirus 

(MERS-CoV). The impact of quarantine and isolation are accessed via threshold analysis 

approach, while the impact of immigration on the disease prevalence was discussed. From 
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there findings it was discovered that MERS-CoV can be controlled by quick isolation or 

monitoring close contacts and quarantining of suspected latent immigrants. 

This article aimed at examining the impact of immigration on the dynamics spread of 

COVID-19, the nature of the stability and to check the conditions to put in place to force the 

basic reproduction number below unity in community. In Section 2, a new mathematical 

model was been formulate for COVID-19 with five compartments. The stability analysis of 

the model was presented in Section 3. In Section 4, the sensitivity analysis was presented for 

the autonomous model. Finally, discussion and conclusion were reported in Section 5 and 6 

respectively.  

2. MATHEMATICAL MODEL 

The study uses five (5) compartmental deterministic mathematical model of the S, E, I, J, 

R to have better understanding of the dynamical spread of COVID 19 diseases in the 

population. The population size ( )tN  is sub–divided into sub–classes of individuals who are 

Susceptible ( )tS , Exposed E (t), Infectious ( )tI , Quarantined ( )tQ , and Recovered ( )tR , 

 Where 

)()()()()()( tRtQtItEtStN ++++=          (1) 

Susceptible (S): Susceptible individual is a member of a population who is at risk of 

becoming infected by a disease, COVID 19 diseases. The population of susceptible 

individuals increases by the recruitment of active individuals at the rate . The population 

decreased by natural death at a rate   , also by force of infection  .  

)()( tStS
dt

dS
 −−=

 
       (2) 

Exposed (E): Exposed / Latent individual is a member of a population who is infected 

individual and show no clinical symptoms of the disease but such fellow is infectious i.e 

cable of transmitting the diseases.  The population of latent individuals increases through 

interaction with infected individual at the rate . The population of latent class diminished by 

the progression rate of infected individual to infectious class ,I  at the rate 1 , quarantine at 

the rate  and natural death at a rate  .  

)()()( 1 tEtS
dt

dE
 ++−=         (3) 

Infectious (I): Infectious individual is a member of a population who is infected with 

clinical symptoms of the disease and capable of transmitting the disease, COVID 19 in the 

population. The population of infectious individuals increases through the progression rate of 

infectious individuals I from latent at the rate 1 . The population is decreased by quarantine 

rate, recovery rate of infectious, natural death and disease induced death ( r ), ( 2 ), (  ), and  

( I ) respectively. 

)()()( 21 tIrtE
dt

dI
I  +++−=             (4) 

Quarantine (Q): Quarantine individual is a member of a population who has contact 

with infected individual and show mild or no clinical symptoms and they are under watch. 

The population of quarantine individuals increases through the rate of quarantine rate of 

latent individual and infectious individual at the rate  and r  respectively. The population 
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decreases by treatment rate of quarantined individual ( 3 ), natural death (  ) and disease 

induced death ( Q ). 

)()()()( 3 tQtIrtE
dt

Qd
Q  ++−+=                 (5) 

Recovered (R): Recovered individual is a member of a population who recovered from 

the disease. The population of recovered individual is increased by the treatment of infectious 

individual at a rate ( 2 ) and treatment of quarantine individual at a rate ( 3 ), this population 

later decreased by natural death at the rate (  ). 

)()()( 32 tRtQtI
dt

dR
 −+=         (6) 

The dynamics of the model is depicted by system (7), figure 1, the variable are listed in 

the Table 1 and the parameter are defined in the Table 2. 

Model Equation 
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where  

 
N

IQL )( 21 ++
=


                          (8) 

 

Table 1.  Description of Variables 

                    

Variables Definitions 

S Susceptible individuals 

E  Exposed individual 

I  
Q  

Infectious individual 

Quarantined individual 

R  Recovered individual 

 

Table 2.  Description of parameters 

 

Parameters Definitions 

1  

2  

3  

Progression rate of exposed class to infectious class 

Recovery rate of infectious class 

Recovery rate of quarantined class 

r  
Quarantine rate of infectious class 

  Recruitment rate 
  Natural death rate 

1  Modification parameter for exposed class 

2  Modification parameter for quarantined class 

i  Induced mortality rate  

  Effective contact rate 

N 

  

  
 

Total population 

Force of infection 

Quarantine rate of exposed class 

 

2.1 Basic Property 

2.1.1 Positivity and boundedness of solutions 

Since model (7) monitors human population, all the parameters are non-negative. 

Therefore, it is needful to show that all the state variables are also non-negative for all time t 

> 0. 
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Theorem 1 

The state variables, S(t); L(t); I(t); Q(t); and R(t), of the autonomous version of the 

COVID 19 disease of model (7), with the non-negative initial data, remain non-negative for 

all t > 0.  

Proof 

One can see from the first equation of (7) that 

 ,)()( tS
dt

dS
 +−                            (9) 

so that, 

,0)))(exp()((
0

+ 
t

dttS
dt

d
                         (10) 

it follows that 

.0)))((exp()0()(
0

+− 
t

dtStS                     (11) 

It can be shown, using similar approach, that other state variables, E(t); I (t); Q(t); and R(t), 

are non-negative for all t > 0.  

Next, consider the biologically feasible region, define by 5

+ R  

Where: 









= +



NRRQIES :),,,,( 5

                             (12) 

It can be shown that   is positively invariant. 

Theorem 2 

 The region  is positively invariant with respect to the model (7) 

Proof: 

 The rate of change of the total population is given by  

,)()(  QIRQIES
td

Nd
+−++++−=                        (13) 

it results into; 

,))(exp1()(exp)0()( ttNtN 



 −−+−=                   (14) 

which follows that 



→)(tN  as ,→t in particular,




)(tN  if




)0(N . Hence, it 

suffices to consider the dynamics of the model in . In this region, the COVID 19 model can 

be considered as being mathematically well-posed [42]. 

3.0 Stability Property 

3.1 Disease Free Equilibrium (DFE) 

Disease free means when there is disease in the population, i.e, E = I = Q = 0. At equilibrium 

points, all other compartment are set to be zero; 

0=====
dt

dR

dt

dQ

dt

dI

dt

dE

dt

dS
                       (15) 
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Let 0E  denotes the disease free equilibrium. Thus; the model in (7) has disease free 

equilibrium given by 









== 0,0,0,0,),,,,(0




RQIESE                       (16) 

3.2 Endemic Equilibrium  

The endemic equilibrium of the model (7) is given below; 
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                                                 (17) 

Where 







++=

+++=

++=

Q

I

K

rK

K

33

22

11

                  (18) 

3.3 Basic Reproduction Number ( 0R ) 

Using next generation matrix [43],[44] the non-negative matrix F (new infection terms) and 

non-singular matrix V (other transferring terms) of the model are given, respectively by; 

 



















 ++

=

0

0

)( 21

N

SQIE

F



and 

















−−

−=

IrEQK

EIK

EK

V





3

12

1

                                        (19)

 

 

After taking partial derivatives of F  andV , we have: 

  

















=

000

000

21 

F  and  



















−−

−=

3

0
21

00
1

Kr

K

K

V




                          (20) 

 

Thus; 

321

133122212
0 KKK

)KKKKθr(β
R

 +++
=                               (21)     
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The threshold quantity 0R  is the basic reproduction number of the model system (7) for 

COVID 19 infection. It is the average number of new secondary infections generated by a 

single infected individual in his or her infectious period. [45]. 

 

3.4 Local Stability 

Theorem 3: The disease free equilibrium of the modeled in equation (7) is locally 

asymptotically stable (LAS) if 0R < 1 and unstable if 0R > 1. 

 

Proof: 

To determine the local stability of 0E , the following Jacobian matrix is computed 

corresponding to equilibrium point 0E . 

Considering the stability of the disease free equilibrium at the critical point 







0,0,0,0,




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3
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00

0

Kr

K

K

J                        (22) 

A necessary and sufficient condition for local asymptotic stability is for the real part of the 

eigenvalue to be in the negative half plane [44]. Thus, it can show that )( 0EJ   given by (22) 

has eigenvalues all have a negative real part. 

To this purpose, it is obvious from (22) that − (twice) are the two of the five eigenvalues of 

)( 0EJ  since the first and fifth columns contain only the diagonal terms. Hence, the other 

three eigenvalues can be obtained from the sub-matrix of 3 by 3 matrix, )( 0

* EJ   given by 








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
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

−

−
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=

3

21
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* 0

Kr

K

K

J







                           (23) 

In what follows, the characteristic equation of  )( 0

* EJ  is of the form 0* =−J   is given 

by: 

















−−

−−

−+−

=







3

21

211

* 0

Kr

K

K

J                (24) 

 

Simplifying matrix (24), can be written as: 

 

001

2

2

3

3 =+++ BBBB                                                                                    (25) 
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And 

1323122213210  KKKKrKKKB −−−−=   

It is easy to see that 0B  can be written in terms of 0R  as: 

]1[ 00 RB −=                                                     (26) 

If in (26) 10 R  , then 00 B . Since the coefficients iB , i = 1,2,3 and the Hurwitz matrices of 

the polynomial (25) are positive, using Routh-Hurwitz criterion (see,[32, 40, 46]), all the 

eigenvalues of (25) have negative real parts. Therefore, the disease free equilibrium, 0E , is 

stable. Otherwise, whenever 10 R  then 00 B . By Descartes’ rule of signs [47], there exists 

one eigenvalue with positive real part. Hence, 0E   is unstable for 10 R  . 

The implication of Theorem 3 is that reduction or elimination of COVID 19 diseases 

governed by model (7) can be eliminated from the population whenever an influx by infected 

individual is small such that 10 R . 

3.5 Global Stability 

Theorem 4: The disease free-equilibrium of the system in (7) is globally asymptotically 

stable (GAS) whenever 10 R and unstable if 10 R . 

Proof:  

Consider the linear Lyapunov function 0: RV → defined by 

)()()( 321 tQAtIAtEAV ++=                      (27) 

where 
31
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1
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A

 +
= , 12 =A and 

3

3
K

r
A = The time derivative of (27) along the solution path 

of the system (7) is given by 
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  )(102 tIRKV −=                    (29) 

Thus, 0V   if 00 R  with 0=V if and only if 0=I . This shows that as →t , then (S(t), 

E(t), I (t), Q(t), R(T)) → 







0,0,0,0,




. It follows that the largest compact invariant set in { 
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(S(t), E(t), I (t), Q(t), R(T))   :V =0} is the singleton 0E . Therefore by LaSalle's Invariance 

Principle [48], the DFE given by 0E  is GAS in   if 00 R . 

The implication of Theorem 4 is that reduction or elimination of COVID 19 disease is 

independent of the initial sizes of the sick people in the population. Hence, COVID 19 

disease can be eliminated if the associated reproduction number is less than unity. 

 

3.6 Bifurcation Analysis 

Bifurcation analysis is used to explore how the asymptotic stability of disease-free 

equilibrium is exchanged for asymptotic stability of endemic equilibrium of model (7) as the 

threshold quantity, Ro, cross the unity. In other words, to investigate the bifurcation at Ro = 1, 

using a center manifold theory of bifurcation analysis described by [42], used in some 

literatures like [49], [50], [51],[52], [53].  

Choosing   as the bifurcation parameter, then at Ro = 1. 

1

321

133122212
0

=
+++

=
KKK

)KKKKθr(β
R



 

                 (30) 

then, 

 

133122212

* 321




KKKKθr

KKK

+++
=                  (31) 

So that the disease-free equilibrium, Do, is locally stable when
*  , and is unstable when

*  , this,
* , is bifurcation value.  

The linearized matrix of the system (7) around the disease-free equilibrium Eo and evaluated 

at
*  is given by; 

Then,  























−

−

−

+−

−−−−

=













32

3

21

211

21

*

0

00

00

000

00

0

),(

Kr

K

K

EJ                (32) 

The eigenvalues ( )  , of ( )*,oEJ
 
given by (32) are the roots of the characteristic equation 

of the form: 

( ) ( ) 0
2

=+  P                    (33) 

Where ( )P
 
is a polynomial of degree three whose roots are real and negative except one 

zero eigenvalue. 

3.6.1 Determination of right eigen-vector and left eigen-vector 

The right eigenvector,
 ( ) ,,,,, 54321

T
wwwwww = associated with this simple zero eigenvalue 

can be obtained from ( ) 0, * =wDJ o  . Furthermore, the left eigenvector, 

( )54321 ,,,, vvvvvv = , corresponding to the simple zero eigenvalue of (32) is obtained from 

( ) 0, * =oDJv  
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3.6.2 Computation of bifurcation coefficient 

The direction of the bifurcation at Ro = 1 is determined by the signs of bifurcation coefficient 

“a” and “b”, obtained from the above partial derivatives, given, respecting, by  

2

222

3211 ][
wv

YC

KKKBCAKD
a



+
=                  (34) 

Similarly, 

22

3212

2

1121

32

12
)1()1(

wv
KKKYK

YKKK

KK

YK
b





−

−+
+

−+
=                          (35) 

Where: 

)( 212113

2321

1121

1211

rKKKKY

YKKKKC

YKKKB

KKYKA









+++=

−=

−=

−=

                  (36) 

By numerical evaluation, using value of parameter in Table 3, it was found that 0a  and

0b , which follows from the theorem of [42] that the model (7) exhibits a supercritical 

(forward) bifurcation
 
and the endemic equilibrium E* is locally asymptotically stable. 

 

Table 3.  Parameters Value and Source  

 

Parameters Value                             Baseline           Source          

1  

2                            

3  

0.9 – 0.4                             0.6                     [10] 

 0.9 – 0.4                            0.7                     [17] 

0.9 – 0.4                             0.7                     [13] 

r  0.2 – 0                                0.05                   [15] 

  1 – 0.2                                0.9                     [41, 32] 
  0.2 – 0                                0.1                     [12,25] 

1  0.8 – 0.4                              0.5                    Assumed 

2  0.9 – 0.2                             0.6                     [21] 

  0.2 – 0                                0.01                   Assumed 

  0.9 – 0.2                              0.7                    [36] 

  0.4 – 0.1                             0.2                     [30] 

 

4 Sensitivity Analysis 

 To determine how changes in parameters affect the transmission and spread of the disease, a 

sensitivity analysis of model (7) is carried out in the sense of [50],[52]. This was done to 

examines changing effects of the model parameters with respect to basic reproduction 

number, Ro, of the model (7). 

 

Definition 1. The normalized forward-sensitivity index of a variable, v, depends 

differentiable on a parameter, p, is   defined as: 

v

p

p

vv
p 




=

                     (37) 
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In particular, sensitivity indices of the basic reproduction number, Ro, with respect to the 

model parameter. The following results were obtained using the parameter value in Table 3: 

 

Table 4 Sensitivity indices with the Parameters 

 
 

Parameter Sign 

  Positive  

  Negative 

1  
Positive 

2  
Positive 

1  
Positive 

2  
Negative 

3  
Negative 

r  Negative 

 

The positive sign of S.I of Ro to the model parameters shows that an increase (or 

decrease) in the value of each of the parameter in this case will lead to an increases (or 

decrease) in Ro of the model (7) and asymptotically results into persistence (or elimination) of 

the disease in the community . On the contrary, the negative sign of Ro to the model 

parameters indicates that an increase (or decrease) in the value of each of the parameter in 

this case leads to a corresponding decrease (or increases) on Ro of the model (7). Hence, with 

sensitivity analysis, one can get insight on the appropriate intervention strategies to prevent 

and control the spread of the disease described by model (7). 

 

Table 5 Sensitivity value with the Parameters 
 

 

Parameter Sign 

  + 1 

  - 0.6361563518 

1  
+ 0.3159609121 

2
  

+ 0.08905979791 

r  - 0.06219721649 

1
 

+ 0.03054932245 

3  
- 0.02654932245 

3  
-  0.02118264309 

 

The most sensitive parameter is  follow by and the least sensitive parameter is  . 

All these eight parameters play an important role in the dynamical spread of the COVID 19 

disease in the population. The effect of some of them will be graphically illustrated below.  

 

5. RESULTS AND DISCUSSION 

In this study, five (5) deterministic epidemiological model of (S, E, I, Q, R) are 

presented to gain insight into the dynamical spread of COVID 19 disease. Positivity of 

solution shows that, the model presented is mathematically and epidemiologically well posed. 

Local and global stability of the model shows that, disease-free equilibrium is asymptotically 
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stable whenever the threshold quantity ‘ 0R ’ is less than unity and otherwise endemic when it 

is greater than unity. The sensitivity analysis reveals that eight (8) parameters plays an 

important role in the dynamical spread of COVID 19 disease according to the model (7), the 

parameters are 
1 ,  , , r ,

2  ,
1 ,

2 and 3 . Four (4) were positive and four (4) were 

negative as it can be seen in Table 4 and Table 5, increasing those with positive index will 

result in the higher spread of the disease in the population, so effects must be made to keep it 

loss while increasing those with negative index will result in the reducing the spread of the 

disease in the population, so effects must be made to raise it up. The bifurcation analysis was 

a forward which shows that the disease can be control if all effect is put in place to force 0R to 

be less than one. 

 

6. CONCLUSION 

In conclusion, reduction or elimination of COVID 19 diseases governed by model (2) 

can be eliminated from the population whenever an influx by infected individual is small 

such that 10 R ,  also reduction or elimination of COVID 19 disease is independent of the 

initial sizes of the sick people in the population. Hence, COVID 19 disease can be eliminated 

if the associated reproduction number is less than unity. The bifurcation analysis was a 

forward which shows that the disease can be control if all effect is put in place to force 0R to 

be less than one. The sensitivity analysis reveals that four (4) were positive, which are  1 ,  ,

1  and 
2 ;  increasing these one will result in the more spread of the disease in the 

population, all hand must be on deck to keep it loss. Four (4) were negative are  , r , 2  and 

3 ; increasing those with negative index will result in the reducing the spread of the disease 

in the population, so effects must be made to raise it up. 
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