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ABSTRACT 

Currently, world is witnessing a massive morbidity and mortality due to COVID-19 pandemic.  A novel 

strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of 

coronavirus disease 2019 (COVID-19). The virus enters inside the body and infect the cells through 

angiotensin-converting enzyme 2 (ACE2) receptor. The S1 protein of SARS-CoV-2 binds to the ACE2 

receptor which results in endocytosis and transfer of virus into endosomes of body cells. Entry of 

SARS-CoV-2 results in activation of innate immune responses first followed by adaptive immune 

responses. The effective host immune responses are crucial to control and prevent viral infection. 

However, excessive production of proinflammatory cytokines and decrease in number of T-

lymphocytes are the major reasons associated with severity of COVID-19. Therapies and drugs that 

can modulate the immune responses appropriately may play a crucial role to control and prevent the 

progression of disease. Chloroquine (CQ) and hydroxychloroquine (HCQ) have anti-inflammatory, 

immunomodulatory, antitumor, antimicrobial and antithrombotic effects. These drugs have already 

been registered in many countries to treat arthritis, lupus and malaria. The treatment responses of 

COVID-19 patients to these drugs have been found positive in some cases and clinical studies are 

underway for evaluating these drugs for the same. However, there are some serious side effects and 

health hazards associated. Many regulatory bodies are demanding more conclusive data on efficacy and 

safety from the clinical studies. Moreover, some regulatory bodies such as Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) have recommended to use these drugs 

in emergency and chronic situation to treat critically ill COVID-19 patients under doctor’s supervision 

with all issued guidelines. The national task force (NTF) set up by Indian Council of Medical Research 

has recommended high risk individuals to take HCQ for prophylaxis. This review summarizes human 

immune response and various aspects of CQ and HCQ with special reference to COVID-19. 

Keywords: Chloroquine, COVID-19, Hydroxychloroquine, Immune response, SARS-CoV-2.  

1 Introduction  

The SARS-CoV-2 belongs to β-coronavirus family [1] and is responsible for causing COVID-19 disease 

which mainly attacks human respiratory system [2].  The disease is known to be transmitted through 

droplets while coughing and sneezing as those come in contact with mouth, nose and eyes of others. Also, 

this virus can remain stable on inanimate surfaces for many hours or even days. Touching these surfaces 
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with subsequent touching of mouth, nose, eyes, may also lead to transmission of disease [3]. The incubation 

period for this virus varies from 1 to 14 days, however, it was found to spread even during the dormant 

period [4]. The cough and fever are the most common symptoms of this disease and in severe cases, lung 

inflammation, acute respiratory distress syndrome (ARDS), cardiac and renal injuries were also observed 

[5-6]. The pre-symptomatic and asymptomatic carriers have become the main reason for human to human 

transmission and rapid spread of the disease across the world [7-8]. Originating from Wuhan, China, till 

date, this pandemic has spread in >212 countries and territories around the world. Total number of 

confirmed COVID-19 cases reported as on 20th July,2020 are >14million and death toll has reached to >6 

lakhs, globally. The frequency of COVID-19 occurrence is higher in elderly people, with compromised 

immune system and are suffering from diabetes and cardiovascular diseases [9]. The SARS-CoV-2 virus 

takes entry into body through ACE2 receptors and establish the infection process [10]. T lymphocytes are 

the major target cells for the virus. In severe COVID-19 cases, drastic reduction in number of natural killer 

(NK) cells, CD4 and CD8 T lymphocytes and excessive production of cytokines was observed which lead 

to immune dysfunctioning [5, 11-12]. Until now, there is no proven or registered drugs for COVID-19 [13]. 

The increased death rate and rapid spread of the disease across the world had created the global emergency 

and made medical professionals, policy makers to explore all possible, potential treatment strategies to 

control and eliminate the outbreak [14].  

Based on the current understanding about virus pathogenesis and symptoms of the disease, specific drugs 

with antiviral and immune modulatory properties will be ideal to control the disease. However, several 

clinical trials are in progress to test antiviral, immunosuppressive or immunomodulating drugs against 

COVID-19 [15]. The previous experience of handling the diseases caused by viruses belonging to the β-

coronavirus family such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory 

Syndrome (MERS) causing pneumonia had provided some background understanding for designing the 

treatment strategy for COVID-19 [16-17]. Anti-malarial drug CQ and its less toxic derivative HCQ, are 

well known agents for immunomodulation and are being used in rheumatology. For many years, these drugs 

have been used to treat autoimmune disease like systemic lupus erythematosus (SLE) and rheumatoid 

arthritis (RA). During the outbreak of SARS corona virus, CQ was used in some cases as an antiviral agent 

to control the infection [18-19]. Many recent studies have suggested the use of these antimalarial drugs to 

control the COVID-19 infection and several clinical trials are under way [20-22]. This review summarizes 

the COVID-19 infection process, general immune responses and specific immune responses against 

COVID-19, mode of action and treatment by CQ and HCQ and global regulatory perspective on usage of 

these drugs.  

2 Structure of SARS-CoV-2 and Its Pathogenesis 

Coronaviruses are pleomorphic, positive stranded RNA viruses (26-32 kb) with 80-120 nm diameter [23]. 

They are categorized in to four type’s α-COV, β-COV, δ-COV and γ-COV [24]. SARS-CoV, MERS-CoV 

and newly identified SARS-CoV-2 coronaviruses belongs to β-coronavirus type. All these viruses are known 

to cause respiratory diseases in human beings [25]. The genome of SARS-CoV-2 encodes 4 structural 

proteins such as Nucleocapsid (N), Membrane (M), Envelope (E) and Spike (S) with various accessory 

proteins as well [3]. The nucleocapsid or N-protein coats and the viral RNA genome which plays a vital 

role in its replication and transcription. The M-protein is abundantly present on the viral surface and it is 

believed to be the central organizer for coronavirus assembly [26]. The E-protein is a small membrane 

protein which plays an important role in virus assembly and interaction of virus with host cell [27]. 

Generally, the mechanism of infection starts with the interaction of coronavirus S protein with 

corresponding receptor on target cell angiotensin-converting enzyme 2. After recognition and attachment 
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of coronavirus, it injects its RNA in to target cell by protease cleaving and membrane fusion [28]. Once 

RNA enters in to host cell the replication and transcription of viral RNA are mediated by 

replication/transcription complex (RTC) [29]. Subsequently the viral envelope glycoproteins are 

synthesized in the cytoplasm and then viral assembly is established inside the endoplasmic reticulum (ER) 

[30]. Viral assembly formed by the combination of genomic RNA and nucleocapsid protein in the 

Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC). After the formation of virions 

assembly, these are transported from Golgi vesicles and ultimately released by exocytosis so that they can 

infect other healthy cells [31].  

The S protein of SARS-CoV-2 plays a major role in initiating the infection. It binds with ACE2 receptor of 

target cell through its receptor-binding domain (RBD) and have ~ 20 times more affinity than SARS-CoV S 

protein [10, 32]. S protein of SARS-CoV-2 also has an affinity to bind with host cellular transmembrane 

serine protease (TMPRSS) [33]. Considering the higher affinity to ACE2 and TMPRSS, these can be 

considered as potential targets for developing drug to control SARS-CoV-2. It was reported that presence 

of furin-like cleavage site on S protein of SARS-CoV-2, whereas, this is absent in other β coronaviruses 

[34]. This cleavage site is believed to be cleaved by furin convertase, for improving the fusion of viral 

particle with host cell membrane. In addition to this, another furin type recognition site named “RRAR” 

has been discovered in S1/S2 cleavage site of  SARS-CoV-2. Moreover, by molecular modelling studies 

Fantini et al. (2020), identified a new site at N-terminal domain (NTD) called as gangliosides binding 

domain (aa 111-158) on S protein of SARS-CoV-2 [35]. It may improve the attachment of virus to ACE2 

receptor and lipid rafts by binding to sialic acids (N-Acetylneuraminic acid) linked to host cell surface 

gangliosides. The mechanism of recognition and attachment of SARS-CoV-2 is considered to be similar as 

like SARS-CoV.  

Although the mechanism of pathogenesis of SARS-CoV-2 is not well understood completely, a probable 

cellular response is being assumed based on earlier research on SARS-CoV [36]. In an initial 1-2 days of 

infection virus binds to ACE2 receptor of epithelial cells with a limited innate immune response [37] and 

this stage of infection can be labelled as asymptomatic state [6]. In second stage of infection (7-14 days) 

virus travels down the respiratory tract and elicits strong innate immune response. The level of cytokines 

such as CXCL10, lambda and beta interferon get increased in viral infected cells [38-39]. In third stage of 

infection virus cause severe disease by infecting lung alveolar type II cells [40]. At this third stage the virus 

mainly damages alveolar cells with fibrin rich hyaline membranes which leads to the formation of 

multinucleated giant cells [5].  

Still there are significant gaps in understanding the pathogenesis of this virus. Therefore, it’s crucial to 

explore the reasons of failure of immune response in COVID-19 patients. A better understanding on 

general human immune responses and specific responses during SARS-CoV-2 infection would contribute 

to design an appropriate therapeutic approach to combat COVID 19. 

3 General Immune Response 

Immune response is a reaction that occurs within the body of host organism in response to foreign invaders. 

Also, by this mechanism body recognizes and defends itself against various pathogens such as, bacteria, 

viruses and other substances that appear foreign and harmful [41-42]. Human beings are exposed to millions 

of potential pathogenic microbes daily through contact, ingestion and inhalation. These microbes contain 

a wide range of toxic or allergenic substances which are threat to normal physiology of humans and other 

mammals. Pathogenic microorganisms such as bacteria and viruses possess various mechanisms by which 

they infect the host organisms. Mostly, pathogens penetrate through the primary barriers, enter and multiply 
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in extracellular spaces inside the body of host organism while intracellular pathogens such as viruses spread 

via extracellular fluids. This lead to alteration in normal body functioning and hence disease [43] occurs. At 

the same time, immune system recognizes these pathogens as non-self or foreign elements and tries to 

destroy substances that contain antigen. A general feature of the immune system is to detect structural 

features of the pathogen or toxin that mark it as distinct from host cells [44]. This discrimination between 

host and pathogen is very crucial to eliminate or minimize the risk of infection without harming its own 

tissues [42-45]. In human beings, immune response is an extremely intricate and exceptionally sophisticated 

system that involves both innate and adaptive mechanisms [46]. These responses consist of network of 

many cells and organs that work synergistically to protect the body against foreign invaders [47-48]. The 

cellular components involved in immune response are predominantly produced by bone marrow, which 

serves both hematopoietic and immunopoietic functions. Bone marrow, a lymphoid tissue is of paramount 

importance in most of mammalian species it acts as both primary and secondary lymphoid organ to regulate 

the production, differentiation and maturation of lymphocytes [49-50]. 

3.1 Innate Immune Response 

Innate immune responses are rapid, nonspecific and of limited duration. Such immune responses are 

activated by the receptors that are encoded by genes present in the germ line of host organism [51-52]. 

Innate responses comprise of physical, chemical and cellular barriers that form the first line of defence 

against pathogenic microbes [51]. Skin, mucus membranes, tears, cough reflexes and stomach acids act as 

physicochemical barriers. While the chemical barriers include soluble proteins, cytokines, chemokines, 

complement proteins, defensins and ficolins [49-50, 53-54]. Numerous cells such as phagocytes 

(macrophages and neutrophils), dendritic cells, mast cells, basophils, eosinophils, natural killer (NK) cells 

and innate lymphoid cells (Table 1) are cellular barriers involved in innate immune response [55-57] which 

helps in impeding the infections. The main purpose of the innate immune response is to straightaway 

prevent the spread of foreign pathogens throughout the body. Penetration of pathogen inside the body of 

host lead to activation of myeloid and mononuclear phagocytes [52, 58]. These cells react to the chemotactic 

factors released by either affected cells or by pathogen itself and abolish the pathogens quickly via 

phagocytosis [56, 59-60]. The myeloid cells, also known as granulocytes or polymorphonuclear leukocytes 

(PML), are the primary armours to arrive at the site of invasion and engulf the pathogen quickly, but these 

are short lived. The cellular elements of innate immune responses unable to recognize the epitopes present 

on an antigen as precisely as observed in adaptive immune responses. These responses to pathogen 

profoundly relies on the interaction of cell surface receptors known as pattern recognition receptors (PRRs) 

[61-63]. PRRs permit specific immune cells to identify and respond quickly to an extensive range of 

pathogens that share common structures with them, such structures are known as pathogen-associated 

molecular patterns (PAMPs) [63-66]. Examples of PAMPs include, natural antibodies, the complement 

receptors, mannan binding proteins, lipopolysaccharides (LPS), the cell wall components of bacteria and 

double stranded RNA that is produced during any viral infections [65-66, 67-69]. Innate immune responses 

also include soluble factors such as serum proteins which bind to the surface of invading pathogen, referred 

as opsonins. Opsonins react with pathogens to make them more susceptible to engulfment by immune cells 

known as phagocytosis. Likewise, cytokines and chemokines are broad category of small proteins which are 

important in cell signalling and produced by immune cells at site of infection and inflammation [70]. These 

proteins help in activation of the local cellular immune responses to infection site as well as activate many 

defence mechanisms throughout the body. The main inflammatory cytokines released during early immune 

response to pathogen infection consist of tumour necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 

6 (IL-6). These cytokines are crucial for initiating the immune cells mobilization, the local inflammation 
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and development of fever which is required for clearance of pathogens [71]. Additionally, these cells help 

in processing and presentation of antigen during specific immune responses, intensification and control of 

immune responses by the release of soluble interleukin mediators. Simultaneously, these cells also help in 

removal of dead and broken cells which is very crucial for the healing process [72]. Innate immune 

responses activate adaptive immune responses via activation of antigen-presenting cells (APCs) [59, 73-74]. 

3.2 Adaptive Immune Response  

Adaptive immune response is specific, acquired and act as second line of defence. Contrary to germinal 

encoded recognition molecules of innate immune response, the adaptive responses are encoded by gene 

elements that somatically rearrange to assemble antigen- binding molecules with exquisite specificity for 

individual unique foreign structures [75-76]. The main characteristic feature of adaptive immune response 

is rapid multiplication and increase of T and B lymphocytes from one or a few cells to millions against an 

infection [77]. Adaptive responses are primarily based on the antigen-specific receptors expressed on the 

surfaces of T and B-lymphocytes [78]. Key features of adaptive immune response are; specificity and range 

of recognition, memory, specialized response, self-restraint and tolerance to components of the organism 

[70, 75]. The essential components of acquired immune response are T and B lymphocytes, 

immunoglobulins (antibodies) and antigen presenting cells (APCs) (Table 1) [78-79]. APC’s plays a key role 

in activation of naive T- cells by presenting foreign antigen via major histocompatibility complex (MHC) 

molecules on cell surface [80]. MHC molecules, also known as human leukocyte-associated antigens (HLA) 

are the cell surface glycoproteins that bind to peptide fragments of proteins which have been either 

synthesized inside the cell (class I MHC molecules) or ingested by the cell and proteolytically processed 

(class II MHC molecules) [81]. Antigen presenting cells includes dendritic cells, B-cells and macrophages 

which are equipped with MHC molecules and co-stimulatory ligands which are predicted by stimulatory 

receptors present on helper T-cells [49-50, 82]. When innate immune response become ineffective against 

growth of microbes, specific immune response gets triggered against the epitopes of pathogen by an 

interaction with major histocompatibility complexes I /II interleukins (IL), and T-lymphocytes (TH and TC) 

[49-50]. The cells produced during adaptive immune response are long lived and remain seemingly in 

dormant state, however, these cells can re-express their functions swiftly after repetitive encounter with 

their specific antigen [82]. This results in manifestation of immune memory and make the adaptive immune 

response more effective against specific pathogens or toxins [83-84]. As adaptive immune response is 

specific and meant to attack pathogens but can sometimes make mistakes in recognizing the structure of 

pathogen and attack itself. The capability of the immune response to prevent self-damage is known as self-

tolerance and failure of self-tolerance triggers the broad class of autoimmune diseases like lupus and 

rheumatoid arthritis [45, 69, 85].  

The innate and adaptive immune responses usually act together. Components of the innate system 

contribute to activation of adaptive immune response by stimulating the antigen-specific cells. Synergy 

between both the immune responses is essential for an intact, fully effective immune response to combat 

any pathogen [86]. In many cases, innate immune responses or early induced responses are not so effective 

in controlling the pathogen growth. However, these responses slow down the growth of pathogens and 

hence, allow time for strengthening of the adaptive immune response to control or eliminate the pathogen 

[87]. Adaptive immune response is further divided into two: the cell-mediated immune response, which is 

carried out by T cells, and the humoral immune response, controlled by activated B cells and antibodies 

[76]. Activated T cells and B cells that are specific to the molecular structures present on the pathogen. 
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These cells kill pathogens directly by apoptosis or secrete antibodies that enhance the phagocytosis of 

pathogens and disrupt the infection [88-90]. 

Table 1. Cellular components/elements involved in human immune responses 

Immune Response Type of 

cells 
Primary Location Target Pathogens Function References 

Type 

Innate 

Macrophages Body cavities and organs 
Broad range (Bacteria,  

viruses, protozoans) 

Phagocytosis and antigen 

presentation  to T cells 
[116] 

Neutrophils Blood Bacteria and Fungi 

Phagocytosis and 

degranulation 

(discharge of contents of cells) 

[117] 

Eosinophils Blood Parasites and allergic tissues 
Degranulation. Release of enzymes, 

growth factors, and cytokines 
[118] 

Basophils Blood Various allergic tissues 

Degranulation. Release histamines, 

enzymes, growth factors and 

cytokines 

[119] 

[55] 

Mast cells 

Connective tissues, 

 gastrointestinal 

 tract, skin and  

respiratory epithelium 

Parasites and various  

allergic tissues 
[120]  

Lymphocytes/ 

T-cells 

Thymus and lymph 

 nodes 

Th cells target intracellular 

 bacteria, Cytotoxic T cells 

 target virus infected and  

tumor cells 

T helper (Th) cells, (CD4+): 

immune response mediators, 

Cytotoxic T cells (CD8+): 

Release of cytokines, perforin and 

granzymes which induce apoptosis 

[121] 

Monocytes Blood Various microbes 

Precursor of mast cells and 

dendritic cells, 

Differentiate into macrophages and 

dendritic cells to elicit an 

immune response 

[122]  

Natural Killer 

 Cells  (NK) 

Blood, body cavities  

and tissues 

Viruses and Tumor  

cells 

Tumor rejection, Destruction of  

infected cells, Release of perforin  

and granzymes which   

induce apoptosis 

[123]  

Adaptive 

T-Cells 

TH -Cell Formed in bone 

marrow & 

maturation 

in Thymus, 

 lymphoid tissues 

Bacteria and Viruses 

T helper (Th) cells, (CD4+): 

 immune response mediators, 

 Cytotoxic T cells (CD8+):  

cell destruction 

[124]  
Tc- Cell 

Treg- Cell 

B-Cells 
Memory B-Cells 

Formation and  

maturation in 

 bone marrow, 

 lymphoid tissues 

Bacteria and Viruses 
 

Linear and conformational 

 epitopes on virions and virus 

 infected cells, releases mediator 

molecules immunoglobulins (Ig) 

H

[125]  
 
 

Plasma B-Cells 

 

3.3 Cell Mediated Immune Response/T-Cell Mediated Immune Response 

Cell mediated immune responses are critical in maintaining the normal homeostasis of an individual. These 

responses are function of T-lymphocytes leading to production of effector T-cells. T-lymphocyte originates 

from bone marrow, matures in thymus gland, and play a vital role in immune response [91-92]. There are 

four different types of T cells: helper, cytotoxic, memory and regulatory T cells. Helper T cells help in 

maturation of B cells and activation of cytotoxic T cells and macrophages via interleukin; cytotoxic T cells 

or killer T cells destroy virus-infected cells and tumour cells in the cell-mediated immune response [89]. 

Memory T cells like B cells are antigen specific cells that get converted to effector T cells and provides rapid 

response when re-exposed to specific pathogen to previous infection [93]. Regulatory or suppressor T cells 
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deactivate T cells and B cells when needed, thus prevent the immune response from becoming too intense 

[94-96]. T-cells recognize antigens based on a two-chain protein receptor and most important of these are 

the alpha-beta T cell receptors. APCs (antigen presenting cells) enzymatically cleaves antigen into smaller 

pieces, bring them to cell’s surface and finally link these fragments with a specific type of antigen-presenting 

protein known as a MHC molecule [97]. This association of the antigen fragments with an MHC molecule 

on the surface of a cell is known as antigen presentation and results in the recognition of antigen by a T 

cell. Antigens from different types of pathogens use different class of MHC molecules that is MHC-I and 

MHC-II [98]. However, these molecules bring processed antigen to cell’s surface through a transport vesicle 

and present the antigen to the T cell receptor [99]. Immature T cells can express either CD4 (cluster of 

differentiation 4) or CD8 molecules on their cell surface. These molecules primarily regulate the interaction 

of T-cell and APC. CD4 cells bind APCs via antigen embedded MHC II molecules and stimulate to form 

helper T-cells [97, 100]. These helper T-cells further stimulate B-cells or cytotoxic T cells directly or secrete 

cytokines such as interferons (IFN)-gamma and interleukin to inform target cells about pathogenic threat 

[101-102]. In contrast, CD8-bearing T cells are associated with cytotoxicity. CD8 molecules interacts with 

an intracellular pathogen and engage antigen embedded MHC I molecule on APCs. These cells are 

stimulated to become cytotoxic T-cells (CTLs) which kill the infected cells directly by apoptosis and release 

cytokines to intensify immune response [103]. During an intense immune response there is rapid increase 

in cytotoxic T cell production and hence these cells kill the virus infected cells before completion of virus 

replication cycle [104]. Due to effective antiviral immune response of cytotoxic T-cells, adaptive/active 

immune response has been evolved at first place. 

3.4 Humoral Immune Response/B-Cell Mediated Immune Response 

Humoral immune response is a function of B cells and originates in bone marrow, hence it is known as B-

cell or antibody mediated response [49-50, 105]. Like T cells, B cells carry antigenic surface receptors known 

as CD antigens (cluster of differentiation). To date over 80CD antigens have been reported in mammals. 

Mostly, B cells carry both MHC I and MHC II class antigens, complement receptors, several interleukin 

receptors and discrete B-cell receptor which is capable to bind with APC processed or free antigen [49-50, 

88]. B cells are stimulated by helper T-cells and are differentiated into plasma cells or memory cells [60, 

107]. Plasma cells are the immune cells which secrete large amount of antibodies or immunoglobulins. 

Immunoglobulins are specialized glycoproteins which neutralize the invading pathogens by recognizing the 

antigen present on cell surface via fragment antigen binding (FAB) variable region and cause phagocytosis 

[41, 108-109]. Five different classes of antibodies are found in humans: IgM, IgD, IgG, IgA and IgE. 

Amongst these five classes of immunoglobulins, only IgM and IgD function as antigen receptor for naive 

B cells [110]. Immune responses are triggered by entry of the foreign elements in body called antigens [82]. 

These responses to antigens are generally classified into primary and secondary immune responses [111]. 

Initial encounter of immature B cells to an antigen induces primary immune response. Depending on type 

of antigen and site of infection primary immune response may take up to 14 days to resolve and leads to 

generation of memory B cells with a higher specificity against antigen [84]. IgM is mostly stimulated by the 

primary immune response, however, IgG participates in for the memory response [112-113]. Any kind of 

subsequent exposure to same antigen lead to the development of secondary immunological response which 

increases the magnitude of the immune response by production of antibodies at much faster rate [113].  

During secondary immune response memory T cells quickly multiply into helper T cells and cytotoxic T 

cells while memory B cells produces antibodies to counteract the pathogen. As secondary immune response 

has higher antibody affinity hence, it takes only 2-3 days to counteract with antigen in a very effective way 

[105]. Unlike T cells, B cells can recognize innate antigen and hence these cells do not entail participation 
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of MHC molecules and antigen-presenting cells. Most protein antigens require signals from helper T cells 

(Th2) or interleukin to make antibodies. Th2 cells provide help to B cells in controlling extracellular 

pathogens and are essential for antibody mediated immune response. The specific receptors present in B 

cells bind to soluble antigens and engulf them via receptor-mediated endocytosis. The digested fragments 

of antigen are then displayed on the cell surface of MHC II molecule. Th2 cells with complementary T cell 

receptors (TCRs) bind with B cells and secrete lymphokines or interleukin which induce B cell 

differentiation to produce plasma cells [114]. Antibodies produced by B cells destroy the pathogens in 

extracellular spaces and thus prevent spread of intracellular infection [41, 106]. When B cell binds to a self-

antigen, in absence of signal from nearby T helper cells to produce antibody, the cell is summoned to 

undergo apoptosis and destroyed. The B cells after destroying the antigens, produce memory cells which 

in turn provide future immunity when the same antigen triggers inside body again [113-115]. 

4 Immune Response Against COVID-19 

Clinically, in response to COVID-19 infection, both innate and adaptive immune responses get triggered 

to kill the virus and protect the body against infection. Immune responses vary at different stages of 

infection [5]. Previous studies on SARS coronavirus revealed that this virus predominantly targets airway 

epithelial cells, alveolar epithelial cells, vascular endothelial cells and macrophages in the lungs [126-128]. 

All these cells express ACE2 host target receptor and the same is being used by SARS-CoV-2 at entry point, 

hence these cell subsets are specifically targeted by this virus [129-131]. Once the virus breaks the protective 

barriers or first line of defence it takes over host cell machinery and undergoes rapid multiplication. This 

lead to huge damage to affected tissues particularly in the organs with high ACE2 expression, such as 

kidney, liver and intestine. These damaged cells and tissues may further lead to hyper activation of innate 

response (monocytes and macrophages) that causes hyper inflammation in the lungs. Therefore, in 

COVID-19, immune hyperactivity is reported to be the main cause of acute lung injury and ARDS at severe 

stage. It has also been reported that tissue resident macrophages in the lungs found to be associated with 

the epithelial damage which lead to initiation of ARDS [132-133]. The macrophages are activated by both 

damage associated molecular patterns (DAMP) such as intracellular contents released by damaged cells or 

heat shock proteins/hyaluronan fragments released due to tissue injury and PAMPs such as viral RNA or 

oxidized phospholipids [134-136]. Molecules from DAMPs and PAMPs trigger multiple innate immune 

responses through TLRs (toll like receptors), NLRP3 (Nod like receptor protein)/inflammasome activation 

[137-138]. Signal transduction by these molecules initiates production of cytokines and chemokines such as 

IL-6, IFNγ which activates antiviral gene expression in neighbouring cells and deploy an additional innate 

and adaptive immune cells to counteract viral infection and maintain tissue homeostasis [11, 139]. Type I 

and type III IFN production stimulates intracellular antiviral defence in neighbouring epithelial cells, which 

may restrict viral dissemination. Whereas, release of IL-6 and IL-1β by monocytes triggers mobilization of 

neutrophils and cytotoxic T cell [5, 139-141]. Activated neutrophils induce pneumocyte and endothelial 

injury by release of leukotrienes and ROS (reactive oxygen species) which straightway lead to acute lung 

injury. However, IL-6 promotes maturation of T helper cells as well as naive B cells for antibody production 

to ensure long-term immunity [142]. Further, by recruiting additional immune cells IL-6 amplifies innate 

immune responses [143]. In contrast to this, IL-1β got cleaved in response to inflammasome activation and 

act locally in improving neutrophil cytotoxicity [138]. Available data indicates that enhanced production of 

cytokines and chemokines create imbalance and dysregulation of innate immune response which becomes 

the main cause of severity of infection. Such elevations in innate immune cytokines are also known as 

“cytokine storm,” these are similar to the cytokine release syndrome (CRS) which is accountable for the 

cell toxicity and multiple organ impairment mediated by COVID-19 infections [144-145]. Irrespective of 
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clinical evidences about dysregulation of innate immune responses is a cause of COVID-19 morbidity and 

mortality, it is very much clear that viral transmission is a key driver of deadly disease. The histopathologic 

study performed by clinicians on specimens collected from severely affected COVID-19 patients revealed 

presence of inclusion bodies with viral persistence [143, 146-147]. The consistent viral persistence may be 

due to inadequate activation of type I and type III interferons which lead to failure of innate immune 

response.  

Research in immunology have established the fact that to clear and maintain long term suppression of viral 

infections, activation of T-cell mediated adaptive immune responses are very much needed. T lymphocytes 

play a vital role in antiviral responses against SARS-CoV-2. One week after beginning of COVID-19 

symptoms, presence of both B-cells and T-cells have been detected in the blood samples against SARS-

CoV-2. During acute viral infections, the viral peptides activate naive CD4+T cells and CD8+T cells 

proliferation. CD8+T cells play a significant role in directly killing the virus infected cells, whereas, CD4+T 

cells are crucial for enhancing CD8+T cell and B cell immune responses [148]. Also, CD4+ T cells are 

responsible for production of cytokine for immune cell recruitment. Autopsy of patient infected with 

COVID-19 showed accumulation of mononuclear cells such as monocytes and T cells in lungs. Whereas, 

presence of low levels of reactive T cells was found in peripheral blood, this state of reduced level of 

lymphocytes is also known as lymphopenia or lymphocytopenia [5-6, 149-151]. Studies suggest the reason 

behind decreased level of T cells (CD4+ and CD8+) in peripheral blood is their movement away from 

blood and mobilization towards the site of infection to kill the infected cells and to prevent the viral 

dissemination. Amplified exhaustion of T cells or depleted lymphocytes (PLD) contributes to severe 

outcomes such as viral persistence and mortality in COVID-19 infected patients [152]. However, in case of 

well-regulated adaptive T cell mediated response and improvement in T cell count both CD4+ and CD8+ 

directly lead to clinical recovery [143]. Patients recovered from COVID-19 infection shown signs of clonal 

expansion, T cell activation and memory T cell formation [140].  

Humoral response is paramount for clearance of the deadly virus as well as an important part of memory 

response that prevents virus reinfection [11]. B cell mediated responses act concurrently with T helper cell 

responses [153]. According to studies, robust B cell responses have been prompted by SARS-CoV-2 virus 

which is supported by presence of virus specific immunoglobulins such as IgG, IgM, IgA and neutralizing 

IgG (nAb) in the early days of viral infection [11]. Stimulated B cells lead to production of antibodies that 

respond to the spiked protein within 2-8 days of onset of symptoms against COVID-19 [154-155] and 

immunoglobulins IgM are the first antibodies appear in response to an infection followed by IgG. In most 

of COVID-19 cases seroconversion takes place between 7 to 14 days of onset of symptoms and antibody 

titres persist for 2-3 weeks or even more than that following the clearance of cytopathic virus [156-162]. 

Primarily, the immunoglobulins (IgG and IgM) bind to the SARS-CoV-2 internal N protein as well as with 

S glycoprotein receptor binding domain (S-RBD) that is present externally [163-165]. The antibodies 

binding with S-RBD domain can trigger the immune responses further and this may lead to neutralize or 

block the virus interactions with the host entry receptor, ACE2 [161, 164]. In most of the blood samples 

of COVID-19 cases, presence of virus specific antibodies (IgG, IgM, IgA and anti- RBD nAbs) were 

detected [161, 164-165] even after 50 days of recovery. Thus, specific immunoglobulins IgG and IgM can 

serve as immunological marker against COVID-19 and serve as an early detection tool to identify COVID-

19 infected host/patient. As severity of COVID-19 is linked with enhanced IgG response, this could serve 

as a complementary tool to distinguish between mild and severe COVID-19 case. Also, therapeutic 

approaches to modulate the immunity can be strategized based on both T cell and B cell mediated 

responses. 
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In malaria and COVID-19, primarily innate and later, adaptive immune responses are triggered. In both the 

diseases, Th cells CD4+ and CD8+ play a vital role in pathogen removal by phagocytosis. Decreased levels 

of T lymphocytes and increased cytokine production contributes for severe pathogenic infection of 

COVID-19. Since, CQ/HCQ are the approved drugs which have been used previously for treatment of 

diseases related to ARDS, autoimmune disorders and hyper inflammation. Therefore, in the current 

situation, the immunomodulatory and anti-inflammatory drugs CQ/HCQ may prove effective in 

controlling COVID-19. 

5 General Use of CQ/HCQ and Mechanism of Action 

Hydroxychloroquine is a derivative of chloroquine and was produced with the introduction of hydroxyl 

group in to chloroquine in the year 1946. CQ and HCQ are derivatives of quinoline and are structurally 

similar weak bases. HCQ is an aminoquinoline [166], the presence of hydroxyl group influences the 

conformational changes and water solubility. In animal trials it was found that, the HCQ was nearly 40 % 

lesser toxic than CQ [167].  HCQ is generally used to prevent or treat uncomplicated malaria in regions 

where people did not respond to CQ treatment [166]. These medications belong to a class known as disease-

modifying antirheumatic drugs (DMARDs). They can reduce skin problems in lupus and prevent 

swelling/pain in arthritis [166]. Recently, CQ and HCQ are both being investigated for the treatment of 

SARS-CoV-2 due to their anti-inflammatory and immunomodulatory properties [168]. 

5.1 Mechanism of Action of HCQ 

Several mechanisms of action are proposed to describe therapeutic effects of HCQ, but majority of them 

are based on in-vitro studies. Notably, the relation between these mechanisms of action and in-vivo clinical 

efficacy and safety are yet to be fully explained. HCQ is known to have direct molecular effects on lysosomal 

activity, autophagy and signalling pathways. Based on various therapeutic involvements of the immune 

system, the mechanism of action is probably dependent on the infection condition, inflammatory 

conditions and affected tissues or organs. 

5.1.1 At Molecular Level  

(a) Inhibition of Lysosomal Activity and Autophagy  

One of the important mode of action of HCQ is the interfering with lysosomal activity and autophagy. It 

is commonly accepted that HCQ accumulates in lysosomes and inhibit their function. In-vitro, CQ can 

destabilize lysosomal membranes and promote the release of lysosomal enzymes inside cells [169]. The 

ability of CQ and HCQ to interfere with lysosomal activity has been extensively documented [170-172]. 

This mechanism inhibits the function of lymphocytes and also have immunomodulatory and/or even anti-

inflammatory effects. The anti-inflammatory effects could be a result of impaired antigen presentation via 

the lysosomal pathway. Lysosomes contain hydrolytic enzymes, in association with other vesicles, perform 

autophagy by digesting materials from inside the cell (endocytosis) or outside the cell (phagocytosis). 

Lysosomes are engaged in recycling cellular substrates [173], antigen processing and MHC class II 

presentation, which indirectly promotes immune activation [174-177]. Normally the pH in lysosomes is 

optimally maintained to keep lysosomal enzymes active for hydrolysis. HCQ might impair the maturation 

of lysosomes and autophagosomes by increasing the pH of endosomal compartments [178], and inhibit 

antigen presentation. In assumption, the available studies suggest that HCQ inhibit immune activation by 

impairing or inhibiting lysosomal and autophagosome functions. One study has identified palmitoyl-protein 

thioesterase 1 (PPT1) as a potential lysosomal target which bind and inhibit PPT1 activity [179]. PPT1 is 
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an enzyme involved in the catabolism of lipid-modified proteins [179]. Notably, PPT1 is found to be 

overexpressed in the synovial tissue of patients with rheumatic arthritis (RA) [180]. 

(b) Inhibition of Signalling Pathways 

Changes in endosomal pH can interfere with toll like receptors, for example TLR9 and TLR7 processing 

[181] hence, CQ and HCQ might prevent TLR activation upon extracellular stimuli by changing the local 

pH [181]. HCQ might block TLR9 signalling at the intracellular level by inhibiting TLR–ligand interactions 

by directly binding to nucleic acids. This hypothesis is backed by an analysis based on fluorescence 

spectroscopy and surface plasmon resonance which showed that antimalarial drugs directly inhibit CpG–

TLR9 communications [182-183]. In addition to TLR9 signalling, CQ can also inhibit RNA-mediated 

activation of TLR7 signalling [184-185]. Though the exact modes of action for inhibiting TLR7 and TLR9 

requires further delineation [186], the inhibition of TLR processing and binding are likely to be the central 

mechanisms of action. Another potential mode of action of HCQ is interfering with cyclic GMP- AMP 

(cGAMP) synthase (cGAS) and the activity of cGAS is repressed by ligand binding [187]. The cGAS–

stimulator of IFN genes (STING) pathway is the main cause of the type I IFN response. cGAS inhibitors 

are at present in advancement for the development of treatment of inflammatory rheumatic diseases [190]. 

5.1.2 At Cellular level 

(a) Cytokine Production and Immune Activation 

HCQ can indirectly reduce the production of anti-inflammatory cytokines by inhibiting TLR pathways. In 

in-vitro studies it was found that, HCQ had inhibited the production of IL-1, IL-6, TNF and IFNγ by 

mononuclear cells [191]. Furthermore, treatment with HCQ had inhibited the production of TNF, IFNα, 

IL-6 and CCL4 in pDC and NK cells co-cultures stimulated with RNA-containing immune complexes 

[192-193]. In a study it was found that, IL-1 receptor associated kinase 4 (IRAK4) had reduced the 

production of cytokines from peripheral blood mononuclear cells (PBMCs) better than HCQ [194]. The 

IRAK4 exerted the effect by inhibiting the expression of 492 genes, whereas HCQ was found to alter only 

65 genes. This study indicated that, HCQ has a remarkable inhibitory effect on cytokine production and 

gene expression, despite of its effects on few genes [194]. In another study it was found that, treatment 

with HCQ, reduced IFNα levels in serum of patients with SLE (Systemic Lupus erythrematus) [195]. The 

long-term treatment of rheumatic arthritis patients with HCQ at the dosage of 200–400mg/day had reduced 

the circulating levels of IL-1 and IL-6 [196-197]. The anti-inflammatory effects of HCQ could be attributed 

in part to the inhibition of immune activation including inhibition of lysosomal activity. Indeed, treatment 

with HCQ is associated with a dose-dependent downregulation of the co-stimulatory molecule CD154 on 

CD4+ T cells from patients with SLE. The downregulation is accompanied by a decrease in intracellular 

Ca2+ mobilization and translocation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and 

NFATc2 [198]. However, to be confident on the direct effect of antimalarial drugs on altered cytokine 

production requires further studies. 

(b) Cardiovascular Effects 

HCQ is not an anticoagulant molecule, but is generally assumed to have vascular protective effects which 

can protect from the development of thrombotic complications. This protective effect seems to be most 

important for patients with a secondary coagulopathy owing to systemic inflammation [199] and in patients 

with primary Anti-phospholipid syndrome (APS) [200]. Patients with inflammatory rheumatic diseases are 

at the higher risk of developing cardiovascular complications when compared with the general population 
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[201-205]. Treatment with HCQ appears to provide long-term benefits by reducing the risk of 

cardiovascular events, lowering fasting glucose levels [206] and reducing hyperlipidaemia 15 [207]. In a 

study, patients with SLE were treated with combined low-dose aspirin and HCQ as well as aspirin and 

HCQ, the results were found superior in combination than aspirin or HCQ alone in terms of preventing 

cardiovascular complications [208]. However, sufficiently large and controlled studies are needed [209]. 

HCQ can also potentially inhibit antiphospholipid antibody binding by which, it can reduce the pro-

coagulatory state in auto inflammatory diseases [210] or platelet aggregation [211-213].  

6 Possible Role of Chloroquine (CQ) and Hydroxychloroquine (HCQ) Against COVID-19 

CQ and HCQ were reported to share similar mechanisms of action against COVID-19 [167]. In the earlier 

outbreak of SARS, HCQ was tested to have in-vitro anti-SARS-CoV activity [214]. But, HCQ becomes 

safer option than CQ because of narrow therapeutic and safety index margin. Yao et al. 2020, found that 

HCQ was more potent than CQ in treating SARS-CoV-2-infected Vero cells [147]. It was demonstrated 

that, the safe dosage (6-6.5 mg/kg per day) of HCQ sulfate concentration possibly produce serum levels of 

1.4-1.5 μM in humans [215]. It is recommended to give 400 mg of HCQ orally per day for 7 to 10 days, to 

efficiently clear the viral nasopharyngeal carriage of SARS-CoV-2, in moderate to severe patient of 

nCOVID-19. It was observed that 70 % of HCQ-treated cases were found negative comparing with control 

group (12.5 %) [216]. HCQ was found to inhibit SARS-CoV-2 infection mostly in 3 to 6 days. HCQ 

individually inhibit the SARS-CoV-2 infection whereas, in combination with other drugs its efficacy was 

increased. Azithromycin, was known to inhibit Zika and Ebola viruses under in-vitro conditions, Gautret 

et al. 2020, used azithromycin in combination with HCQ [216] to treat COVID-19 patients. The results 

were encouraging and on day 6th, 100 % cases were cured [216] hence it is important to understand how 

HCQ is inhibiting the SARS-CoV-2 infection. 

HCQ is a weak base known to raise the pH of acidic organelles (endosomes/lysosomes) [170]. These 

organelles are essential for membrane fusion. Hence, changes in pH assumed to prevent viral entry, 

transport and post entry stages as well [217]. In addition to this, it is confirmed that HCQ effectively inhibit 

the entry of SARS-CoV-2 by changing glycosylation of viral protein [218]. HCQ also inhibit the release of 

SARS-CoV-2 genome by blocking the transport of virus from early endosome antigen 1 (EEA1)-positive 

(EEs) to endosomal–lysosomal protein LAMP1+ (ELs) [219]. Fantini and colleague 2020, showed that 

HCQ bind to sialic acid and ganglioside with high affinity and prevents the binding of S protein to 

gangliosides [120]. Therefore, HCQ treat nCOVID-19 patient by changing pH, protein glycosylation, 

prevent binding of S protein to gangliosides and blocking transport mechanism. In addition to inhibiting 

viral infection, HCQ has immunomodulatory property and can suppress the immune response [19, 220]. 

Therefore, it may also attenuate the inflammatory response in nCOVID-19 cases [167]. Cytokines such as 

IL-6 and IL-10 have been reported to be increased in response to SARS-CoV-2 infection which may lead 

to cytokine storm followed by multi-organ failure and death [11, 143]. HCQ was reported to influence the 

production of these interleukins and hence suppresses the hyper activated immune response [221]. 

7 Global Overview on Regulatory Aspects 

The Food and Drug Administration (FDA) is a federal agency of the United States (US). Under certain 

conditions such as public health emergency, FDA may authorize the use of investigational unapproved 

drugs or therapies. HCQ was an FDA approved anti-inflammatory and antimalarial drug. Whereas, CQ was 

an approved antimalarial drug. But till date there is no drugs or vaccines against the disease COVID-19, 

approved by FDA. However, on March 28th, 2020 the FDA has given an emergency use authorization 

(EUA) for chloroquine phosphate (chloroquine) and hydroxychloroquine sulfate (hydroxychloroquine) 
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products donated to the strategic national stock pile (SNS) to be distributed and used for certain patients 

hospitalized with COVID-19. SNS can distribute these drugs to states and doctors can prescribe and treat 

adults and adolescent patients who weigh ≥50 kg and have been hospitalized with severe COVID-19 

infection and for whom a clinical trial or participation is not feasible. EUA states that, fact sheet indicating 

the information on usage, potential known risks and drug interaction should be made available to health 

care providers and patients. Patients can access these drugs in two ways. First, they may approach 

pharmacies with an off-label prescription issued from a licensed doctor. Secondly, the patients may also 

obtain through SNS. Anticipating the increased demand, FDA had published a product specific guidance’s 

(PSGs) to support the new generic development of these drugs. The PSGs, for these two drugs clearly 

mention that, these are AA rated (No, bioequivalence problems in conventional dosage forms) and in-vivo 

studies are not necessary [222-223]. European medical agency (EMA) is involved in the evaluation of 

medicinal products of European Union (EU). EMA states that, the patients suffering from COVID-19 can 

use these drugs under doctor’s supervision and necessary information about the usage should get from the 

doctor or pharmacist. EMA also states that, the medical professionals can’t prescribe these drugs for more 

than the required durations and these drugs only should be used in case of chronic disease conditions. The 

health care professionals can use these drugs only for clinical trials and for outside clinical trials, they should 

follow the national established protocol [224]. 

Indian Council of Medical Research (ICMR) is responsible for formulation, coordination and promotion 

of biomedical research in India. On 23/03/2020, the National Task Force (NTF) constituted by ICMR 

recommends the use of CQ and HCQ for treatment of high-risk individuals. The task force recommends 

only high-risk people can be subjected to chemoprophylaxis with HCQ. The high-risk individuals and 

dosage recommended by NTF is as follows. The asymptomatic health care workers should take 400 mg of 

HCQ two times on first day, followed by once in a week for next seven weeks. The recommended drug 

must be taken along with the meals. Whereas, the asymptomatic household contacts of laboratory 

confirmed cases, should take 400 mg dose two times on day 1, followed by once in a week for another three 

weeks at 400 mg dose and it should be taken along with meals. The task force restricts the recommendation 

of prophylaxis in children below 15 years of age and for the person with known cases of retinopathy and 

having hypersensitive reaction to HCQ and 4-aminoquinoline compounds. ICMR recommends only the 

above-mentioned people should take recommended dose as preventive measures only. However, they 

should follow all prescribed public health measures such as maintaining safe social distance (minimum 1 

meter), respiratory guidelines, frequent hand washing and also, they should use all kinds of personal 

protective equipment’s [225]. 

The other regulatory bodies such as Brazilian Health Regulatory Agency (Anvisa), Australia’s Therapeutic 

Good Administration (TGA), Medicines and Healthcare Products Regulatory Agency (MHRA) doesn’t 

recommend CQ and HCQ for treatment of COVID-19 and warns the public about the self-medication 

due to serious health risks associated with the drug usage. These bodies reinforce on necessary clinical trials 

on representative human samples to prove the safety and efficacy for approval. World Health Organization 

(WHO) is following all the clinical trials conducted on control of COVID-19 from various research 

organizations. However, due to unavailability of efficacy and safety data from clinical trials WHO is not 

recommending the use of anti-malarial drugs (CQ and HCQ) for the treatment of COVID-19 [226-228]. 

8  Conclusion  

It is clear from research data and clinical trials that controlling of inflammatory immune responses are as 

crucial as targeting the virus to stop the progression of disease. Doctors and researchers have tried several 
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drugs alone or in combinations for helping COVID-19 patients. However, till date, there is no approved 

drug against this newly emerged disease. Historical studies on SARS and MERS suggests that the hosts’ 

immune responses (innate and adaptive) against SARS-CoV-2 are similar to these viruses. Therefore, at 

present, the vaccines and drugs which were used against SARS and MERS are being tested against COVID-

19. Amongst all, antimalarial drugs hydroxychloroquine has received enormous attention due to its 

immunomodulatory property and could be a potential therapy to treat severely affected COVID-19 

patients. However, human immune response and the timing of immunomodulation therapy is crucial to get 

positive outcomes. As immunosuppressant, HCQ may potentially affect the antiviral immune response, 

therefore, clinicians should decide the timings to use such medications based on patients’ age, medical 

condition and severity of infection. Moreover, early intrusion of such therapy in infection associated-hyper 

inflammation is considered as a strategic aspect to get recovery against COVID-19. As HCQ is a broad-

spectrum antiparasitic, anti-rheumatic, immunity booster, immunomodulatory and immunosuppressant, 

several countries have included this therapy for COVID-19 treatment, irrespective of unavailability of 

enough clinical and scientific data to support the use of HCQ against COVID-19.  In India, usage of HCQ 

drug is recently approved by ICMR to combat against COVID-19 infection as well as to utilize this drug as 

a prophylactic measure for frontline health workers. However, with current ambiguity regarding usage of 

HCQ drug to treat COVID-19 patients, it is important to understand the potential risks and benefits of 

this drug. Ongoing clinical trials will provide significant data for an enhanced understanding of potential 

role of HCQ in treatment and prevention of COVID-19. Also, additional studies on host immune 

responses against SARS-CoV-2 are equally crucial to understand the dysfunctional outcome of immune 

responses, such as cytokine storm and hyper-inflammation in severely affected COVID-19 patients. 

Understanding of correlation between immune responses and disease severity may also prove to be a game 

changer strategy to finalize the antiviral drugs and adjuvants to control COVID-19. 
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