NOT PEER-REVIEWED

Version 1: Received: 09 August 2021 / Approved: 20 August 2021 / Online: 22 August 2021

{Click on above link or DOI to see the latest available version of this article}

Administering Shingles Vaccine Prior to Initiation of Biologics Therapy: A Systematic Review

Alicia Ryan^{1, 2}, Alex Soo^{1, 2}, Niall O'Rourke^{1, 2}, Ayub Nasrudin^{1, 2}, Dan Khan^{1, 2}, Fiona Lafferty^{1, 2}, James Kelly^{1, 2}, Nicola Byrne^{1, 2}, Serhiy Semenov^{1,2}

¹ Department of Gastroenterology, Tallaght University Hospital ² School of Medicine, Trinity College Dublin

ABSTRACT

Background

Shingles, also known as herpes zoster, is a viral infection caused by the varicella zoster virus. The classic feature is a painful dermatomal rash. Although the disease is often self-limiting, complications such as postherpetic neuralgia can cause long-lasting morbidity. Patients who are immunosuppressed are more susceptible to developing shingles, and disease may be more severe. The purpose of this paper is to systematically review the evidence for prophylactic use of the shingles vaccine prior to initiating biological therapy.

Objectives

To evaluate the evidence for shingles vaccine prophylaxis prior to initiating biologics therapy. **Methods**

We performed a comprehensive Boolean search of PubMed and EMBASE for the following terms: prophylaxis, prior, shingles vaccine, varicella zoster, infliximab, biological therapy, guidelines. Eligible studies met the following criteria: published in English, published since 2000, any shingles vaccine type and dose, vaccine monotherapy, autoimmune disease biological therapy. There was no specific target for gender, age or population. Randomised controlled trials, meta analyses and systematic reviews were included. Studies were excluded based on the following criteria: duplicate studies, non-English language papers, papers not addressing autoimmune disease therapy, clinical trials and cohort studies.

Results

32 studies met the search criteria, of which 8 were selected for the literature review. All studies had generally differing conclusions as to whether shingles vaccination in autoimmune patients undertaking biologic therapy was safe and effective.

How to Cite:

Ryan *et al.*, "Administering Shingles Vaccine Prior to Initiation of Biologics Therapy: A Systematic Review". *AIJR Preprints*, 335, Version 1, 2021.

<u>Copyright</u> © 2021. The Author(s). This is an open access preprint (not peer-reviewed) article under <u>Creative Commons Attribution-NonCommercial 4.0 International</u> license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the original work is properly cited. However, caution and responsibility are required when reusing as the articles on preprint server are not peer-reviewed. Readers are advised to click on URL/doi link for the possible availability of an updated or peer-reviewed version.

Conclusions

Patients with autoimmune disease should be considered for the herpes zoster vaccine prior to initiating biological therapy, though the specifics of vaccination administration is unclear. Our findings support the use of the live attenuated vaccine, *Zostavax* or the non-live vaccine, *Shingrix*. However, further research is required to evaluate specific autoimmune conditions and specific biological agents with a view to the formulation of national clinical guidelines on the use of the herpes zoster vaccine in the immunocompromised.

Keywords: Shingles, Vaccine, Prophylaxis

1 Introduction

Herpes Zoster (HZ), otherwise called shingles, is an infection of a nerve and surrounding skin caused by the varicella-zoster virus $(VZV)^1$. Whilst occurring mostly during childhood, it can remain dormant and reactivate later in life. Characterised by a unilateral vesicular and painful rash, severe complications can also occur, ranging from postherpetic neuralgia (PHN) – long-term pain continuing after the rash has subsided² – to being potentially fatal³.

Within the general population, shingles occurs approximately every 3-5/1000 person years, though these rates are higher amongst elderly autoimmune patients, particularly those on immunosuppressive therapy². This is worrying given that immunosuppressive medications like biologics have expanded the medical field in terms of treatment options. Widely used for their minimal toxicity profile⁵, higher efficacy and target specificity, biological agents including tumour necrosis factor-alpha (TNF α) inhibitors have become mainstream therapeutic options for autoimmune diseases⁶. Whilst mediating their therapeutic effect by targeting abnormal immune responses, targeting the immune response can cause immunosuppression^{7,8} leading to VZV reactivation.

Shingles prophylaxis to prevent VZV reactivation, with the shingles vaccine one avenue currently being explored. Although the 2005 Shingles Prevention Study demonstrated the live-attenuated vaccine's efficacy and informs much of our current practice, HZ vaccination in immunocompromised cohorts remains poorly understood⁹.

Thus, the objective of this systematic literature review is to evaluate the evidence surrounding prophylactic shingles vaccination in adult autoimmune patients prior to initiating biological therapy.

2 Methods

A literature search of PubMED and EMBASE databases were carried out. The databases were searched for titles and abstracts containing keywords (see *Figure 1*) to identify the risk of various infections among patients receiving biological therapy for autoimmune diseases.

Boolean search parameters:

"Prophylaxis" OR "Primary Prevention" AND "Shingles Vaccine" OR "Varicella Zoster Vaccine" AND "Autoimmune Disease" AND "Adult Patients" OR "Infliximab" OR "Biological Therapy" AND "Guidelines"

2.1 Search Strategy

PubMED and EMBASE were chosen, given their common use in medical literature. The search was designed to include publications of full text articles that were published within the past 19 years (2000-2019). The first live-attenuated vaccine for prevention of HZ, *Zostavax*, was released by the FDA in 2006¹⁰. However, the search was broadened to include data for when the first biological agent, Etanercept, was approved by the FDA in 1998 and started seeing clinical usage for rheumatoid arthritis (RA) in 2002¹¹. This time parameter ensured we could account for the emergence of biological therapy in autoimmune diseases.

Initial results were recorded with removal of duplicate results. Relevant articles were revised according to titles and abstracts for inclusion into the literature review.

2.2 Inclusion/Exclusion Criteria

Studies were included in the literature review based on the following: (1) Published in English, (2) published since 2000, and involved studies concerning (3) VZV monotherapy-vaccination, (4) any autoimmune adults over 18 years, (5) any biologic therapy-caused immunosuppression. Studies were excluded if they remained unpublished or had data not specific to vaccination or biologics. This was supplemented by a grey literature search.

The number of studies retrieved from each search and excluded throughout the literature search and the number of studies for inclusion are displayed in a PRISMA diagram (Figure 2).

Page **4** of **14**

Administering Shingles Vaccine Prior to Initiation of Biologics Therapy: A Systematic Review

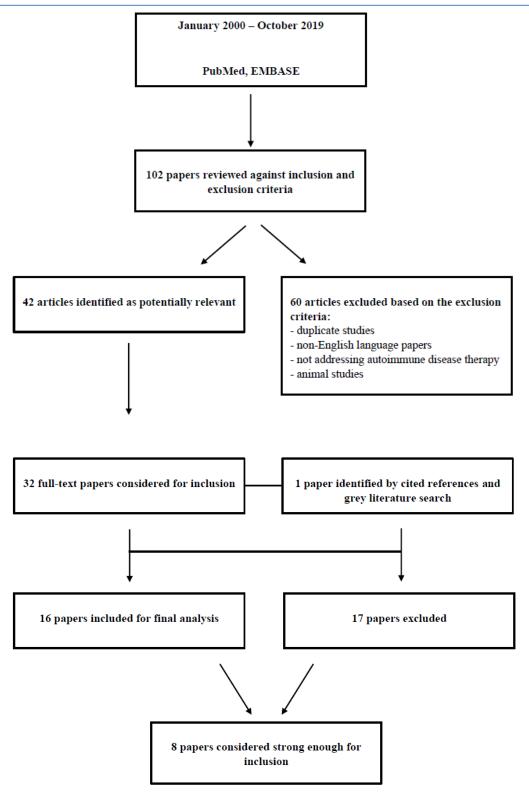


Figure 2. PRISMA chart highlighting inclusion of articles for the literature review

Reference	Objective	Design	Population	N and Age	Intervention and Duration	Effect/Benefit	Recommendations	Other comments
Zahid et al,	To highlight the	Literature	Inflammator	N/A	Specific	With prior vaccination,	Whilst some current guidelines	N/A
2017	treatment for HZ	Review	y Bowel	N/A	biologics not	there is a low risk of HZ	recommend against Zostavax/live-	
	infection and		Disease		mentioned,	infection whilst on	attenuated vaccines in	
	discuss the		(IBD),		only "low-	immunosuppressive	immunocompromised patients, the	
	protective roles		Rheumatoid		dose	therapy. No cases of	authors of this study think it prudent to	
	prophylactic		Arthritis		biologics".	disseminated VZV	vaccinate immunocompromised	
	antiviral drugs &		(RA),		Time period	infection were found in	patients approximately 3 months prior	
	vaccinations can		Systemic		not specified	any of the reviewed	to starting immunosuppressive therapy.	
	play in preventing		Lupus		either.	studies.		
	HZ complications		Erythematos					
	in patients on		us (SLE),					
	immunosuppressive		Granulomato					
	therapy		sis with					
			polyangiitis					
Papadopou-	To compare	Systematic	ARD	N/A	Abatacept,	Not covered.	As of Feb 2014, EULAR and various	General
lou et al,	existing	Review	patients in	Age not	rituximab,		European and Australian committees	guidelines not
2013	recommendations		Europe,	explicitly	tocilizumab,		on immunisation practices recommend	specific to the
	on vaccination of		North	mentione	others (but not		avoiding VZV vaccination in patients	VZV vaccine.
	adult patients with		America &	d; lowest	specified).		receiving any immunosuppressive	Paper notes that
	autoimmune		Australia	age	Duration of		therapy, due to a lack of literature on	most
	rheumatic diseases			recomme	biologic		the subject.	recommendations
	(ARDs) in Europe,			ndations	therapy not			are based on
	North America &			reviewed	mentioned			expert opinions.
	Australia			to were	either.			
				adults \geq				
				50				
Kopylov et	To determine the	Case-	IBD (CD &	121; 86	Infliximab,	Most (90.7%) patients	The authors recommend serological	Prophylactic
al, 2012	prevalence of	Control	UC)	of them	Adalimumab.	using anti-TNF biologics	testing for HZV for all IBD patients	vaccination data
	seropositivity for	Study		were on	Duration of	were seropositive for the	regardless of exposure history prior to	not included,
	VZV-IgG in			anti-	therapy not	VZV IgG, suggesting that	initiation of immunosuppressive	measured via self-
	immunomodulator-			TNFs	mentioned;	in this group, biologic	therapy with subsequent vaccination of	questionnaire on

AIJR Preprints

Available online at preprints.aijr.org

	treated IBD patients			Study	study only	therapy probably does not	patients found to be seronegative. This	prior exposure to
	(including anti-			cohort	recorded	significantly interfere with	questions the current European Crohn's	VZV. This can
	TNFs biologics)			mean age	whether	VZV IgG production (thus,	and Colitis Organisation (ECCO)	include the VZV
				= 37 +/-	biologics were	immunity). Negative	guidelines, which recommends VZV	vaccine or/and
				12.8	used at time of	history of VZV exposure	vaccine immunisation ≥3 weeks before	past history of
					serological	was a poor predictor of	immunomodulator therapy onset	VZV-related
					testing.	VZV IgG seronegativity.	(preferably at IBD diagnosis), with a	illnesses.
							negative history of chickenpox,	
							shingles and VZV vaccination.	
Furer et al,	To update the	Systematic	AIIRD	N/A	Includes, but	Not covered; see	EULAR recommends giving the live	Findings were
2019.	present EULAR	review	patients	N/A	not limited to:	"Association between	attenuated herpes zoster vaccine in	similar to the
	recommendations		(adults &		Infliximab,	Vaccination for Herpes	mildly immunosuppressed AIIRD	2011 guidelines.
	for vaccination in		paediatrics)		etanercept,	Zoster and Risk of Herpes	patients on a case-by-case basis and	All
	patients with		on		adalimumab,	Zoster Infection among	preferably only to those seropositive	recommendations
	AIIRD; including		immunosupp		certolizumab,	Older Patients with	for VZV antibodies (to prevent primary	are still expert
	information on the		ressive		golimumab	Selected Immune-mediated	varicella infection). EULAR notes that	opinion. Also
	incidence/prevalenc		therapy		abatacept,	Diseases"	the newly licenced Shingrix vaccine	recommends that
	e of vaccine		(glucocrticoi		rituximab,		which has been recommended for	vaccines should
	preventable		ds,		secukinumab,		patients aged 50 and over (including	be administered
	infections and the		conventional		ixekizumab,		immunosuppressed patients) may be	prior to planned
	efficacy,		synthetic /		belimumab,		the future preferred vaccine for AIIRD.	immunosuppressi
	immmunogenicity		biologial /		anakinra,			on; for B-cell
	and safety of		targeted		canakinumab.			specific therapy, \geq
	vaccines provided		synthetic		Duration of			6 months after
	to AIIRD patients		DMARDs		therapies not			administration
	undergoing				mentioned.			and 4 weeks
	immunosuppressive							before the next
	therapies							course.
Bye et al,	To identify "at risk"	Retrospecti-	IBD (CD &	N/A	Anti-TNF	HZ infection associated	Severe IBD patients and/or patients on	N/A
2016	IBD patients who	ve cohort	UC)	Mean	biologic	with increasing IBD	dual-immunosuppressive therapy could	
	may be targeted	study		age of	monotherapy	severity and dual-therapy	benefit from immunisation with the	
	with a new adjuvant			those	and dual-	(particularly with	new non-live, non-attenuated vaccine.	
				with	therapy, type	thiopurine). Of the 30		

	herpes zoster			VZV	unspecified.	cases of HZ identified (25		
	subunit vaccine			infection	Time from	CD, 5 UC)- none had		
	subuint vacenie			= 42	initating	previously received the HZ		
				years	therapy to	vaccine. Of this group,		
				(Range	VZV infection	10% were on anti-TNF		
				21-81	ranged from 3	monotherapy and 47%		
				years)	months to over	were on dual therapy (anti-		
				yearsy	10 years	TNF and thiopurine		
					10 years	therapy [93%] or		
						methotrexate [7%]). Age		
						and length of		
						immunosuppressive		
						therapy do not seem to		
						predict HZ infection.		
						prodict The Infoction.		
Cheetham et	To characterise the	Retrospecti-	Not explicit;	145 (on	Etanercept	No cases of disseminated	The findings supports current	N/A
al, 2015	(potential?) risk of	ve cohort	i.) Unclear	etanercep	1	VZV were identified with	recommendations	
,	disseminated VZV	study	what the	t); study		either current or remote	that patients should withhold their	
	and herpes zoster	5	(individual)	looked at		usage of	immunosuppressant drugs for 4 weeks	
	post-administration		indication	a total of		immunosuppresant drugs,	before	
	of the zoster		was for	14,554		including etanercept, in the	zoster vaccine immunization. This is a	
	vaccine in patients		patients	patients		42 day window post-	general recommendation and is	
	who were currently		using	on		vaccination. Twenty-five	not/does not seem to be etanercept-	
	receiving		etanercept,	various		cases of herpes zoster	specific.	
	immunosuppressant		ii.) Broke	immunos		occurred during the 42-day		
	medications		down	uppressio		window in the current-user		
			participants	n therapy		group vs. 17 cases in the		
			into groups	(only		remote-user group; overall,		
			who had	etanacept		this led to the conclusion		
			"inflammato	was the		that during the 42 day		
			ry and	relevant		period, there is a modest		
			immune-	featured		increase in HZ risk in the		

			mediated	biologic		group undergoing current		
			conditions",	therapy)		immunosuppression vs.		
			which were	N/A		those with remote		
			broken down	1.071		exposure. There is no		
			further by			specific discussion		
			systems;			surrounding etanercept, so		
			autoimmune			little conclusion can be		
			diseases may			drawn.		
			or may not			diawii.		
			have					
			featured					
Zhang et al,	To examine the link	Retrospecti-	RA,	463,541	Anti-TNF	No cases of varicella	Unclear; questions current	Study concludes
2012	between HZ	ve cohort	psoriasis,	patients;	biologics	infection documented	recommendations contraindicating the	by suggesting the
2012	vaccination and HZ	study	psoriatic	18,683	(adalimumab,	within the 42 days post-	HZV vaccine in autoimmune patients	need for a RCT
	incidence within	study	arthritis,	received	etanercept,	vaccination and starting	receiving biological therapy.	specifically
	and beyond 42 days		ankylosing	the	infliximab,	biologic therapy.	focorving biological dictupy.	addressing this
	after vaccination in		spondylitis	vaccinati	certolizumab,	Vaccination was		topic.
	patients with		(AS), and/or	-on	and	associated with a decrease		topic.
	selected		(IRD), and/or IBD	All	golimumab) &	in VZV risk by 40% over a		
	autoimmune		463,541	>60y/o;	non-TNF	median 2-year follow-up		
	disease in the		patients;	mean age	biologics	period.		
	context of biologics		18,683	$= 74 \pm 8$	(abatacept and	period.		
	and other		received the	years	rituximab)			
	autoimmune		vaccination	years	Intuxinia0)			
	therapies		vacemation					
Eberhardson	To demonstrate the	Randomised	AS, IBD	354 for	Not explicitly	This was not directly	The results may provide relevant	Indirect
et al, 2017	immunogenicity	control trial	(CD and	total	mentioned	covered. The study	information for this patient population	measurement of
ot ul, 2017	and safety of ZVIN	control that	UC),	study;	mentioned	indirectly measured	who may benefit from the prevention	immunosuppressi
	in patients with RA,		cerebral	170 on		(potential) HZV infection	of HZV and HZV-related	on by measuring
	SLE, IBD, AS, MS,		sarcoidosis,	biologics		by measuring VZV-	complications. This is assuming further	gpELISA and
	PsO, and other		MS,	Adults		specific immune response	phase 3 studies confirming the	IFN-γ ELISPOT
	autoimmune		psoriasis,	≥ 18		markers. To this end, the	efficacy, immunogenicity, and safety	responses in
	diseases receiving		psoriatic			inactivated VZV vaccine	of the ZVIN vaccine are conducted.	patient levels.
	anseases receiving		Poolinite					Patient le verb.

immunosuppressive	arthropathy,	(ZVIN) was well tolerated	However,
therapy who are	RA, SLE	and showed statistically	although it meets
receiving either		significant VZV-specific	the threshold this
biologic or non-		immune responses	does not mean the
biologic		approximately 28 days	vaccine is safe for
immunosuppressive		after the last dosage	usage.
therapy		regime. Overall the	
		frequency of adverse	
		events also decreased with	
		subsequent vaccine doses.	

Table 1. Papers deemed fit for inclusion on final analysis.

AIJR Preprints Available online at preprints.aijr.org

3 Study Outcome

Study findings were mixed, differing in whether autoimmune patients on biologics had higher incidences of developing shingles. All, however, did not find a definite immediate link between HZ infection following biologic therapy. This led to mixed recommendations. Only one study¹² recommended vaccination being acceptable with biologic therapy, with the rest either recommending vaccination with certain (conflicting) caveats or stopping short of recommending it.

Defining a stringent 'evidence-based conclusion' was difficult. Only eight studies were found, with many of them being reviews of current guidelines, which tended to homogenise biologics and autoimmune diseases and give non-clinically specific data. Primary research was lacking, and even then, most examined too small numbers for a significant conclusion within their own settings.

Only one study¹³ was deemed significantly relevant in study scope, but its findings were unclear. Another study¹⁴ demonstrated statistically significant VZV-specific immune markers following vaccination, though laboratory markers does not directly translate into being disease-free. Given all this, any links between biologics and prophylactic vaccination remained probable at best.

4 Discussion

4.1 Biological Therapy

Most biologics reviewed in our papers were TNF α inhibitors; this makes sense, given that TNF α is key in many inflammatory diseases¹⁵. Aside from the etanercept study¹⁶, all studies homogenised biologics under 'biological therapy' or failed to specify specific drugs under mono/dual therapy. Thus, except for finding that dual biologic-thiopurine therapy¹⁷ increased HZ risk, we could not gauge the different extent any particular biologics or therapy combination had on immunosuppression, or opportunistic infection risk.

Reviewing external literature yielded mixed results. Whilst one study showed a higher HZ risk in non-TNF α biologics¹⁸ than other immunosuppressive therapies, an alternate study with IL-17 inhibitors found no HZ risk change in psoriasis patients. Presumably important, it is also unclear what effect biologic dosage could have; one study¹⁹ mentioned 'low-dose biologics', but did not evaluate whether the resulting small HZ risk was because of the low dose, or in spite of it.

In the bigger picture, it is also unclear if, or to what extent, immunosuppressive therapy usage in general increased HZ risk; one study²⁰ found no significant differences in RA patients for VZV-specific immune markers and cell-mediated immune responses following live VZV vaccination and subsequent tofacitinib treatment.

4.2 Demographics: Autoimmune Disease Cohorts

Encompassing over 80 different illnesses²¹, most biologics are only used for IBD, RA, SLE and AS¹⁵. This made it difficult reviewing the nuances in biologic immunosuppression of individual diseases. Even then, most zosters vaccination in immunocompromised patients

research pertained to IBD. Current ECCO guidelines¹² recommends VZV immunisation at least three weeks prior to commencing immunomodulatory therapy. Despite some conflict on vaccine timing, all studies agreed that all IBD patients should undergo VZV-IgG serological testing prior to vaccination, and that prophylactic vaccination does have a protective role, especially in seronegative patients.

For autoimmune rheumatic disease, the evidence is less clear. Our literature for these groups were all systematic reviews with no concrete data and recommended against vaccination²² or only in mildly immunosuppressed patients²³. If looking at vaccination without biologics, one study²⁴ found that despite a higher absolute shingles incidence rate of 50% compared to healthy populations, the zoster vaccine was still protective. Whilst HZ vaccination is likely useful for autoimmune rheumatic patients, its safety remains unclear when factoring in biologic therapy.

4.3 Demographics: Age

Amongst different age groups, current data recommends the *Shingrix* vaccine in adults over 50, including immunocompromised patients¹⁹. However, NHS guidelines prohibit vaccination above 80 years in all, given data²⁴ showing *Zostavax's* efficacy wanes with age; this is supported by another study demonstrating only 38%²⁵ efficacy in immunocompetent patients over 70. Presumably, all this pertains to patients undergoing biologic therapies too, suggesting vaccination benefits do not outweigh the risks in older patients.

4.4 Timeline Indications

Timing of administration is important, given that the current Zostavax vaccine is live and biologics suppresses the immune response. Amongst those supporting vaccination, there is no consensus when to stop or/and begin biologics following vaccination. Recommendations on when biologics should begin post-vaccination range from 3 weeks¹² to 3 months¹⁵; some instead recommend a case-by-case approach²⁶. Other literature simply deferred to national guidelines on general vaccination procedures in immunocompromised patients¹⁹.

There was even less literature on when to stop biologics if vaccinating later, problematic given that many patients have ongoing disease but no prior VZV exposure. The only paper¹⁶ explicitly targeting this recommended following current general guidelines on zoster-vaccine immunisation of withholding immunosuppressant drugs 4 weeks prior. When re-initiating treatment for VZV IgG seronegative patients, there was no mention of stopping immunosuppression prior to vaccination¹².

Current NHS guidelines states patients receiving the live vaccination should wait for an established immune response before immunosuppressive therapy. This is supported by the CDC, which notes that waiting four weeks should be sufficient for viral live vaccines²⁷. However, they recommend not delaying therapy if this would worsen the underlying condition, as most live vaccines are attenuated; this should only occur following specialist consult on a case-by-case basis²⁸.

Administering Shingles Vaccine Prior to Initiation of Biologics Therapy: A Systematic Review

Long-term, Zostavax's efficacy does wane over time²⁹. Different studies show different extents of change, but specific to autoimmune patients on biologics, it is most probable that Zostavax is protective for at least 2 years¹³.

4.5 Live vs Non-live

The current VZV vaccine, a live attenuated known as *Zostavax*, has shown efficacy in immunocompromised patients by providing 70-90% immunity persisting for at least 10 years¹². EULAR vaccination recommendations for AIIRD patients¹⁹ has shown vaccine efficacy after 42 days with AIIRD patients on bDMARDs, with no HZ incidence increase. Interestingly, trials have shown a potential reduction of HZ risk by up to 70% in adults over 50 years, with lower HZ incidence after 2 years regardless of immunosuppressive medications¹⁹. Current clinical practice considerations are based primarily on *Zostavax*. However, giving live-attenuated vaccines to immunosuppressed patients, especially those on low-dose biologics, remains controversial¹⁵.

A newer non-live recombinant vaccine *Shingrix*, is currently recommended for adults over 50 regardless of previous VZV vaccination and immune status. Whilst *Shingrix* is currently undergoing clinical trials³⁰ and is not recommended for immunosuppressed patients, it is promising. Assuming it does so, *Shingrix* would likely see larger usage in previously more 'atrisk' patients and is less likely to be contraindicated with concurrent biologic therapy.

4.6 Pharmacoeconomics

When evaluating a role for prophylactic vaccination, consideration can be given to cost effectiveness. One US study found *Zostavax's* cost effectiveness ratio per QALY gained between $$25,379-$27,609^{31}$. Incidentally, this is within the Irish healthcare system's incremental cost effectiveness ratio of $€20,000-€45,000^{32}$. Vaccination also likely costs less than alternative prophylactic means, such as prophylactic acyclovir dosing. This all suggests prophylactic vaccination is economically viable, implying a role to play in clinical practice assuming safety can be definitively established.

4.7 Limitations

This review's conclusion was limited by the few available studies; most existing literature reviewed either HZ infections and autoimmune suppression (mainly with non-biologic therapy), or prophylactic vaccination in autoimmune patients, without combining all three. This made it harder to summarise our findings- in making our judgement, we had to extrapolate indirect literature on this subject.

One possibility for improvement would be to expand the criteria, such as including data prior to 2000 and on paediatric patients. Studying prophylactic vaccinations of other opportunistic diseases in similar autoimmune cohorts could also reveal more about the general safety and efficacy of vaccination prior to biologic therapy. Although not specific, this could yield a clearer understanding of the vaccination-biologics interaction, which could help inform us given the limited findings we have.

5 Conclusion

We believe there is a definite role for HZ vaccination in prophylaxis against shingles in autoimmune patients undergoing biologic therapy. Although some suggest otherwise, we recommend erring on caution and following national vaccination guidelines as when and how to vaccinate; case-by-case exceptions ought to be considered too. Further research³³ however is required, particularly regarding specific autoimmune conditions and biologic agents as well as *Shingrix*, with a view to improve the formulation of clinical guidelines on the use of the HZ vaccine in the immunocompromised.

References

- ¹ https://www.hse.ie/eng/health/az/s/shingles/
- ² https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144657/
- ³ https://www.nhs.uk/conditions/vaccinations/shingles-vaccination/
- ⁵ Rosman, Z., Shoenfeld, Y. and Zandman-Goddard, G. (2013). Biologic therapy for autoimmune diseases: an update. BMC Medicine, 11(1)⁶ (Li, Zheng and Chen, 2017)
- ⁷ Yun, H., Yang, S., Chen, L., Xie, F., Winthrop, K., Baddley, J. W., Saag, K. G., Singh, J. and Curtis, J. R. (2016), Risk of Herpes Zoster in Autoimmune and Inflammatory Diseases: Implications for Vaccination. *Arthritis & Rheumatology*, 68: 2328-2337. doi:10.1002/art.39670.
- ⁸ Alterations in immune function with biologic therapies for autoimmune disease; Her, Minyoung et al.; Journal of Allergy and Clinical Immunology, Volume 137, Issue 1, 19 - 27
- ⁹Oxman, M., Levin, M., Johnson, G., Schmader, K., Straus, S., Gelb, L., Arbeit, R., Simberkoff, M., Gershon, A., Davis, L., Weinberg, A., Boardman, K., Williams, H., Hongyuan Zhang, J., Peduzzi, P., Beisel, C., Morrison, V., Guatelli, J., Brooks, P., Kauffman, C., Pachucki, C., Neuzil, K., Betts, R., Wright, P., Griffin, M., Brunell, P., Soto, N., Marques, A., Keay, S., Goodman, R., Cotton, D., Gnann Jnr., J., Loutit, J., Holodniy, M., Keitel, W., Crawford, G., Yeh, S., Lobo, Z., Toney, J., Greenberg, R., Keller, P., Harbecke, R., Hayward, A., Irwin, M., Kyriakides, T., Chan, C., Chan, I., Wang, W., Annunziato, P. and Silber, J. (2005). A Vaccine to Prevent Herpes Zoster and Post herpetic Neuralgia in Older Adults. *New England Journal of Medicine*, 352, pp.2271-2284.
- ¹⁰Good, C., Parekh, N. and Hernandez, I. (2018). Avoiding rash decisions about zoster vaccination: insights from cost-effectiveness evidence. *BMC Medicine*, 16(1).
- ¹¹Curtis, J. and Singh, J. (2011). Use of Biologics in Rheumatoid Arthritis: Current and Emerging Paradigms of Care. *Clinical Therapeutics*, 33(6), pp.679-707.
- ¹² Kopylov, U., Levin, A., Mendelson, E., Dovrat, S., Book, M., Eliakim, R. and Ben-Horin, S. (2012). Prior varicella zoster virus exposure in IBD patients treated by anti-TNFs and other immunomodulators: implications for serological testing and vaccination guidelines. *Alimentary Pharmacology & Therapeutics*, 36(2), pp.145-150. doi: 10.1111/j.1365-2036.2012.05150.x
- ¹³ Zhang, J., Xie, F., Delzell, E., Chen, L., Winthrop, K., Lewis, J., Saag, K., Baddley, J. and Curtis, J. (2012). Association Between Vaccination for Herpes Zoster and Risk of Herpes Zoster Infection Among Older Patients With Selected Immune-Mediated Diseases. JAMA 308(1), 43-49.¹⁴ Eberhardson M., Hall S., Papp K.A., Sterling T.M.,
- ¹⁵ Zahid, M. F., Ghufran, M., Mansoor, A.-e-R., & Sohail, M. R. (2017). Herpes Zoster during immunosuppressive therapy for autoimmune diseases. *JOURNAL OF AYUB MEDICAL COLLEGE*, *ABBOTTABAD*, 29(3), 481–484.
- ¹⁶Cheetham T.C., Marcy S.M., Tseng H.F., Sy L.S., Liv I.L., Bixler F., Baxter R., Donajue J.G., Naleway A.L., Jacobsen S.J. (2015). Risk of Herpes Zoster and Disseminated Varicella Zoster in Patients

Administering Shingles Vaccine Prior to Initiation of Biologics Therapy: A Systematic Review

Taking Immunosuppressant Drugs at the Time of Zoster Vaccination. Mayo Clinic Proceedings 90 (7), 865-873.

- ¹⁷ Identifying "At Risk" IBD patients who may be targeted with a new adjuvant herpes zoster subunit vacccine. European Crohn's and Colitis Organisation
- ¹⁸ Marra F, Lo E, Kalashnikov V, Richardson K. (2016) Risk of Herpes Zoster in Individuals on Biologics, Disease-Modifying Antirheumatic Drugs, and/or Corticosteroids for Autoimmune Diseases: A Systematic Review and Meta-Analysis. *Open Forum Infectious Diseases* 3(4) 205
- ¹⁹ Furer, V., Rondaan, C., Heijstek, M. W., Agmon-Levin, N., Assen, S. V., Bijl, M., ... Elkayam, O. (2019). 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. *Annals of the Rheumatic Diseases*. doi: 10.1136/annrheumdis-2019-215882.
- ²⁰ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656925/
- ²¹ Rose, N. (2016). Prediction and Prevention of Autoimmune Disease in the 21st Century: A Review and Preview. *American Journal of Epidemiology*, 183(5), pp.403-406.
- ²² Papadopoulou, D., & Sipsas, N. V. (2013). Comparison of national clinical practice guidelines and recommendations on vaccination of adult patients with autoimmune rheumatic diseases. Rheumatology International, 34(2), 151–163. doi: 10.1007/s00296-013-2907-9

²³ http://www.jrheum.org/content/44/7/1083

- ²⁴ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870665/
- ²⁵ Dooling, K. L., Guo, A., Patel, M., Lee, G. M., Moore, K., Belongia, E. A., & Harpaz, R. (2018). Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. American Journal of Transplantation, 18(3), 756–762. doi: 10.1111/ajt.14683
- ²⁶ 2019 update on EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD); https://ard.bmj.com/content/early/2019/09/18/annrheumdis-2019-215882.share
- ²⁷ https://www.uptodate.com/contents/immunizations-in-autoimmune-inflammatory-rheumatic-disease-in-adults
- ²⁸ (Public Health England 2013, *Immunisation against infectious diseases*, Public Health England, viewed 3 November 2019, https://www.gov.uk/government/collections/immunisation-against-infectious-disease-the-green-book
- ²⁹ Long-Term Effectiveness of the Live Zoster Vaccine in Preventing Shingles: A Cohort Study https://academic.oup.com/aje/article/187/1/161/3883627#119347528
- ³⁰ Alexander et al (2018). Live zoster vaccination in an immunocompromised patient leading to death secondary to disseminated varicella zoster virus infection. *Vaccine*, 36(27), 3890-3893.
- ³¹ *Vaccine* volume 25 ISSUE 49
 - 28 NOVEMBER 2007; Evaluation of the cost-effectiveness in the United States of a vaccine to prevent herpes zoster and postherpetic neuralgia in older adults
- ³² Guidelines for the Economic Evaluation of Health Technologies in Ireland, 2019
- ³³ Safety and Effectiveness of Live Zoster Vaccine in Anti-Tumor Necrosis Factor (TNF) Users (VERVE Trial); https://clinicaltrials.gov/ct2/show/NCT02538757?term=verve