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A B S T R A CT  

Normal brain function means fine-tuned neuronal circuitry with optimum neurotransmitter 

signaling. The classical views and experimental demonstrations established neurotransmitters 

release-uptake through synaptic vesicles. Current research highlighted that neurotransmitters 

not merely influence electrical impulses; however, contribute to gene expression, now we 

know, by posttranslational modifications of chromatinised histones. Epigenetic modifications 

of chromatin, like DNA methylation, histone methylation, acetylation, ubiquitilation etc., 

influence gene expression during neuronal development, differentiation and functions. 

Protein glutamine (Q) modification by tissue transglutaminase (TGM2) controls a wide array 

of metabolic and signaling activities, including neuronal functions. Dopamine neurons are 

central element in the brain reward system that controls the learning of numerous behaviours. 

The ventral tegmental area (VTA) consists of dopamine, GABA, or glutamate neurons. The 

VTA and adjacent substantia nigra are the two major dopaminergic areas in the brain. In view 

of this, and to focus insight into the neuronal functions caused by TGM2 mediated histone 

modifications at the Q residues, either serotonylation (for example, H3K4me3Q5 to 

H3K4me3Q5ser) in the context of cellular differentiation and signaling, or dopaminylation 

(for example, H3Q5 to H3Q5dop) in the dopaminergic VTA reward pathway and the precise 

role of cocaine withdrawal in this scenario are summarized and discussed in this contribution. 

 

Keywords: Neurotransmission; Epigenetics; Glutamine modifications; Tissue transglutaminase 2; Ventral tegmental area; 

Reward system. 

Introduction 

The brain function largely depends on neuronal circuitry and neurotransmitter signaling (1-4). In the Brain, 

dopamine and related circuits are instrumental in decision-making, behavioural activation and exertion of 

efforts (3). Mesolimbic dopamine, also known as the ventral tegmental area (VTA) dopamine is one part of 

numbers of neurotransmitters signaling in several parts in the brain. Animal model studies related to 

decision making are highly relied upon characterizing human efforts and behaviour, since there are 

remarkable similarities among the brain areas of rodents and in humans (3, 4). Evidences implicate that 
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there is aberration in effort related decision making in several neurological disorders. VTA is the locus of 

mesolimbic dopamine cell bodies that stores and releases dopamine.  As depicted in Scheme 1, the 

mesolimbic dopamine pathway projects from the VTA to the nucleus accumbens (NAcs) and plays an 

important role in reward processing (3, 5-7). Nigrostriatal dopaminergic pathway, responsible for regulation 

of locomotion, originates from the substantia nigra (6, 7) and dopamine release at the terminals is evoked 

by action potentials, and depends on dopamine stores (3, 7-9). Dopamine is transported back into the 

neuron by the dopamine transporter (10). Dopamine uptake is time dependent, whereas release and 

distributions in the circuitry depends on the frequency of action potentials (11-13). It is well established 

that basal ganglia control body movements. Basal ganglia also imparts in dopamine reward system (for a 

recent review, see Kim and Hikosaka, 2015; 14) 

The housekeeping or specialized functions of cells requires metabolic activities; expression of the genes of 

respective enzymes involved in a metabolic process is controlled by transcription factor(s) and chromatin 

modifications. When gene expression is regulated by chromatin (DNA and histones) modifications it is 

known as epigenetic regulation of gene expression (15-20). Precisely epigenetics is mitotically and/or 

meiotically heritable changes in gene function that happen without changes in DNA sequence (16-20). 

Methylation of DNA at cytosine-5 carbon (DNA methylation; 18-20), methylation, acetylation and 

ubiquitilation modifications of specific lysine (K) and methylation of arginine (R) residues of histones are 

well studied examples (Table 1; refs. 15-17, 21-26). They play crucial roles in chromatin structure 

stabilization and dynamic gene expression. Phosphorylations of proteins, mainly, in the side chains of Ser 

(S), Thr (T) and Tyr (Y) are elsewhere in the cellular functions; including subcellular organelle functions, 

membrane signaling and chromatin templated processes (27-29). 

With the progress of understanding the nature of DNA packaging into chromatin; “beads on a string” 

structure and folded complex in the nucleus (Kornberg RD 1974; 30); it was a puzzle, how DNA 

polymerase and RNA polymerase would progress forward to execute their respective function. It was the 

effort of a genius, Vincent Allfrey, who deciphered (in the year 1964!) that, histone undergoes methylation 

and acetylation modifications (31), thus put the founding stone of molecular basis of histone modifications 

in epigenetics arena (32). However, the progress took some time to identify the enzyme histone 

acetyltransferases and the cofactor, acetyl-coenzyme A (33-35). During those years almost parallelly histone 

deacetylase activity was discovered (36-40). During 1950s isolation of gamma-amino-butyric acid (GABA) 

from several plants and its role as neurotransmitter was established (41-44). Hence, scientists were curious 

to learn the effects of GABA on tissue cultures; however, lack of adequate supply of GABA perhaps 

coerced few labs to observe the effect of “butyric acids” on histone de/acetylation relating DNA/RNA 

synthesis (45-49). 

This article attempts to provide an interdisciplinary lookout that integrates biochemistry, molecular biology 

and epigenetics research in the field of neuroscience and brain function.  

Neurotransmission and the dopamine reward system  

The ventral tegmental area (VTA) and adjacent substantia nigra (SN) are the two major dopaminergic areas 

in the brain. The VTA is considered as the integral part of a network of structures, together known as the 

reward system/pathway, which transports dopamine from the VTA to the nucleus accumbens, amygdala, 

and hippocampus (also known as mesolimbic pathway; and the amygdala and hippocampus are key 

components of the limbic system), that are involved in reinforcing behavior (Scheme 1; refs. 2-6). Several 

major efferents projects from the VTA; both the mesolimbic and mesocortical pathways are prominent 

(50). Combinatorial viral strategy to transsynaptically label afferents defined that, VTA consists of 

dopamine, GABA, or glutamate neurons. For a comprehensive knowledge of the input-output VTA 
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network for addiction and other maladaptive behavioral disorders see Faget et al. 2016 (51). In brief, VTA 

dopamine neurons receives major portion of input from striatal and globus pallidus. Glutamate neurons 

are enriched with cortical input and GABA neurons receive highest input from the lateral habenula and 

laterodorsal tegmental nucleus (51). Connectivity is best explored utilizing three known maker genes; 

enzyme tyrosine hydroxylase (TH) essential for dopamine synthesis, excitatory vesicular glutamate 

transporter 2 (vGluT2), and inhibitory glutamate decarboxylase 67 (Gad1) or Gad2 (52, 53). 

Epigenetic modifications and function of the reward system 

Epigenetic studies on neuronal circuitry are emerging (54, 55). Whether self-administration of cocaine could 

deliver any heritable phenotype in rats was explored recently.  Increase of acetylated histone H3 in the Bdnf 

promoter was detected in the sperm of sires that self-administered cocaine (56). Earlier, Kumar et al. (57) 

demonstrated acute induction of hyperacetylation of H4 of cFos promoter within 30 min of a single cocaine 

injection, but not in chronic cocaine subjects in consistent with cocaine's inability to induce cFos chronically 

in striatum. However, histone H3 hyperacetylation of the gene promoters of Bdnf and Cdk5 were noted in 

chronic cocaine subjects only. Epigenetic mechanisms modulate physiology and functions associated with 

learning and memory, particularly the reward pathway and drug addiction. Various types of modifications 

on DNA and histones in postmitotic neurons in relation to brain functions, learning and memory are 

recently reviewed (58). Image-based informatics tools allowed global genome-scale structural analysis and 

cross-correlation, as well as identification of brain region specific enrichment of gene functions, facilitating 

better understanding of classical neuroanatomical atlases of brain organization and function (59-61). 

Epigenetic mechanisms which might be responsible for addiction primarily focus on behavioral responses 

by a systemic measure of drug treatment and reward. Most uncertain issues in interpretation of data lies 

with the fact that there couldn’t be any noise free model that would benefit the interpretation of epigenetic 

studies; however, assessment of drug-induced molecular changes, like DNA methylation and histone marks 

must be relied upon those factors. Cocaine addiction and alteration of histone acetylation and methylation 

are known in the NAc. Experiments on correlating the acetylation mediated potentiation of cocaine 

sensitivity and reward were performed by inhibition of HDAC function. It was intriguing to observe that 

while HDAC1 deletion in the NAc attenuated behavioral responses to cocaine, deletion of HDAC2 or 

HDAC3 does not; Kennedy et al., 2013 (62). HDAC3 is the most highly expressed HDAC in the brain 

(63), enhances extinction and prevents reinstatement of cocaine seeking in a conditioned place preference 

paradigm (63-65). Long term application of cocaine reduces the deposition of H3K9me2 chromatin was 

correlated with inactivation of the methyltransferase G9a in the NAc.  Inhibition of G9a activity by genetic 

disruption or using inhibitors typically enhances locomotive responses to cocaine, and ectopic expression 

of G9a reverses it (66, 67). 

A recent study from Maze lab (Lepack et al, 2020; 68) forwarded the science of the reward system finding 

dopamine in the heart of nucleosome; they deciphered that nucleosomes of the VTA region neurones are 

enriched with chromatin having histone 3 glutamine 5 (H3Q5) dopaminylated (H3Q5dop). They 

hypothesized that susceptibility to cocaine relapse during periods of attempted abstinence from cocaine use 

is due to result from the rewiring of brain reward circuitries. The VTA dopamine neurons (Scheme 1) may 

achieve H3Q5dop enrichment in the midbrain. Rats undergoing withdrawal from cocaine showed an 

accumulation of H3Q5dop in the VTA. Reduction of H3Q5dop precipitation by epigenetic engineering 

reversed cocaine-mediated gene expression changes, attenuated dopamine release in the nucleus accumbens 

(NAc), and reduced cocaine-seeking behavior. To define their findings clinically relevant they traced the 

deposition of H3Q5dop in the VTA brain of cocaine-dependent postmortem individuals and relevant 

controls. It is very interesting that reduced deposition of H3Q5dopin the VTAs of cocaine patients; 
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H3K4me3Q5dop, H3K4me3, total H3, and TGM2 were unchanged in their relative levels of expression. 

This is something novel among the findings in this field of neurobiology that establish a neurotransmission-

independent role for nuclear dopamine in relapse-related transcriptional plasticity in the reward system. As 

depicted in Figure 1, the enzyme tissue transglutaminase 2 (TGM2) is identified as the responsible enzyme 

for the reaction H3Q5 to H3Q5dop by transamidation 

Diverse function of transglutaminase 2: new role as epigenetic writer during neuronal 

development and in the reward pathway  

Transglutaminases (EC 2.3.2.13) family contains factor XIII (plasma transglutaminase), keratinocyte 

transglutaminase (TGM1), hair follicle transglutaminase, prostate transglutaminase (TGM4), and tissue 

transglutaminase (TGM2). The amino acid sequences of these enzymes differ, but share the unique active 

site sequence –YGQCW- and calcium dependence. Notable TGM2 functions are: incorporation of amines 

into proteins, crosslinking of proteins, site-specific deamidation, isopeptidase activity, promotion of cell–

matrix interactions by conjointly binding integrin and fibronectin (69-71). Gentile et al. (72) deciphered 

cDNA encoding TGM2 from mouse and human. Amino acid sequence of human TGM2 protein is 84% 

and 81% identical to mouse and guinea pig TGM2 respectively. Human TGM2 in vitro translation and 

SDS-PAGE analyses predicted an apparent molecular mass of 85 kD. Chen et al. (73) found that mutation 

of the active site cysteine (cys277) in TGM2 compromised enzyme activity in transfected COS-1 cells. 

The structure of TGM2 dimer in complex with GDP deciphered four functional domains: N-terminal β-

sandwich for fibronectin and integrin binding; catalytic core containing the catalytic triad for the acyl-

transfer reaction and a conserved Trp essential for this catalytic activity; and two C-terminal β-barrel 

domains.  The second β-barrel contains a phospholipase C binding sequence and the guanidine nucleotide-

binding site is unique to TGM2 (74). Antonyak et al. described a splice variant of TGM2 consisting of 548-

amino acids in which phospholipase C binding domain is truncated. Ectopic expression of this isoform is 

cytotoxic/apoptotic due to inappropriate oligomer formation retaining its transamidation activity (75). In 

the central nervous system (CNS) TGM2 plays a pivotal role; however, mode of action of TGM2 in 

response to a challenge differs in astrocytes and neurons. In primary neurons, TGM2 expression protects 

cells from oxygen and glucose deprivation (OGD)-induced cell death and knockdown of TGM2 in primary 

neurons results in a loss of viability. However, deletion of TGM2 from astrocytes results in increased 

survival following OGD and improved ability to protect neurons from injury (76-80). TGM2 constitutively 

activates G-proteins Gαq, Gαo1 and Cdc42 by histaminylation of glutamine residues in their catalytic core 

(81).  

Modifications of glutamine residues in histones and discovery of new epigenetic mark in brain 

function 

With the advances of diverse activity of TGM2 several groups were curious about monoaminylation of 

proteins by transamidation (reviewed in 70, 71, 76, 80). The in vitro assays of TGM2 activity upon proteins, 

including nuclear histones were of particular interests (82-88). The accessibility of a glutamine to TGM2 

depends on the exposed tails of H2B and H3 from the nucleosome core was deciphered by 

monodansylcadaverine labelling studies of residues, Q104 and Q112 of H2A (82, 83). The studies of 

Ballestar et al. thus implicated that unwinding of DNA and the dissociation of the H2A−H2B dimers is 

essential. The Q76 of H3 was labelled in the H3−H4 tetramer only when the H2A−H2B dimers are 

dissociated. Q95 of H2B was labelled only after unwinding of DNA (82). 

Posttranslational modifications (PTMs) of nuclear histones are additional layers of information necessary 

to preserve and/or decode the “program of eukaryotic lives” stored in the DNA sequences of respective 

genome. Thus PTMs of histones means gene expression for myriads of cellular functions according to the 
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information despatched by signal transduction pathways and metabolic requirements (89-96). Table 1 

shows a brief about the major amino acids side chain modifications by different chemical groups and 

respective enzymes involved with the specific reaction process, including the enzyme(s) for the reverse 

reaction. 

Discovery from Maze lab, an year ego depicted that histone serotonylation independent of neurotransmitter 

function of serotonin with the functional consequences is the quantum jump in our understanding of 

epigenetic regulation of gene expression and cellular functions (97). It is well established that serotonin 

form covalent bonds with cytosolic/organelle proteins by the enzyme TGM2; the transamidation 

modification modulates the signalling properties of the modified proteins to facilitate their functions in the 

organelle (98, 99). Serotonylation of histone H3 at glutamine 5 (H3Q5) position in the context of pre-

existing H3K4me3 nucleosomes has recently been documented (97). H3K4me3 is an expressive mark 

contributed by MLL and SET1 family proteins (100, 101). The combinatorial H3K4me3Q5ser modification 

is ubiquitous in mammalian tissues and enriched in the euchromatin territory. Notably, in brain and gut 

tissues majority of serotonin is produce, and interestingly, the H3K4me3Q5ser deposition is very high. To 

provide an insight of the functional implications of H3K4me3Q5ser deposition the authors performed 

genome wide analyses in human embryonic stem cells, serotonergic neurons, developing mouse brain and 

cultured serotonergic cells. It is deciphered that H3K4me3Q5ser modifications facilitate TFIID4 binding 

and enhance gene expression require for cellular differentiation (97, see also 102, 103).  

As already discussed in the section of ‘epigenetic modifications and the reward system’; the recent report 

from Maze lab (68) implicated that neurotransmission by dopamine and chromatin modification, H3Q5 

dopaminylation (H3Q5dop) achieve simultaneously for rewiring of brain reward circuitries during periods 

of attempted abstinence from cocaine. They executed that rats undergoing withdrawal from cocaine showed 

an accumulation of H3Q5dop in the VTA. Reduction of H3Q5dop by inhibition of TGM2 in the VTA 

within the processing of withdrawal, cocaine-mediated gene expression changes were reversed, along with 

attenuated dopamine release in the NAcs, and reduced cocaine-seeking behavior. This is very exciting 

discovery in epigenetics, molecular biology and neurobiology that establish neurotransmission dependent 

and independent roles for nuclear in the reward system (68, see also 104).  

Histone glutamine modification other than H3Q5 

Few years back a study on H2AQ104 methylation from Tony Kouzarides lab published in Nature. The 

modification is specific to rDNA transcription and operates in nucleolus and the responsible enzyme is 

human fibrillarin as the H2AQ104-specific methyltransferase in addition to its well characterized function 

of methylating 2´ribose sites of nascent rRNA (105). Prior to their report, glutamine methylation was 

observed on translation termination factors and ribosomal proteins at the universally conserved –GGQ- 

sequence site for the release of nascent peptide (106-108).  

Facilitator of chromatin transcription (FACT) is a histone chaperone with nucleosome destabilizing 

activities required for the efficient passage of RANPII and transcription (101). FACT interacts with H2A 

over a consensus sequence spanning H2AQ104. Methylation of H2AQ104 or mutation of H2AQ104A 

reduced FACT binding and enhance transcription potential of RNAPI by a mechanism that differs from 

the RNAPII. It was suggested that most of H2A from rDNA chromatin is thrown out by FACT, resulting 

in low nucleosome occupancy of H2A during the transcription and reloading of glutamine methylated H2A 

by the chaperone NAP1 (109, 110). Till date the mechanism is not clear! The functional relationship 

between FACT and H2AQme in rDNA transcription requires more data. 

Fibrillarin as histone H2AQ104 methyltransferase is further characterized (109). Fibrillarin is reversibly 

acetyl-modified at several lysine residues by the acetyltransferase CBP and deacetylated by SIRT7. 
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Interestingly, acetylation of fibrillarin do not impair pre-rRNA methylation; however, hyperacetylated 

fibrillarin loss its interaction with chromatin histone H2A and eventually cannot methylate H2AQ104 

halting rDNA transcription. Deacetylation of fibrillarin activates its H2AQ104 methylation potential and 

RNAPI mediated rRNA synthesis (111). 

Discussion 

A comprehensive neurochemical, epigenomic anatomical map is essential for understanding gene 

expression and brain function. The classical experiments established roles of neurotransmitters in varied 

aspects neurophysiology. Studies with dyes and tracers have been made to map the neuronal circuitry. 

Among the tracers; the retrograde tracers horseradish peroxidase, wheat germ agglutinin etc., and 

anterograde tracers, including biotinylated dextran amine are important. There were technical inabilities to 

precisely judge input-output efficacies of cells differing in gene expression patterns (3, 4, 52 and references 

therein). Current research implicated the roles of neurotransmitters beyond electrical impulses (68, 97). 

Chemical modifications of histones, including methylation, acetylation, and ubiquitilation etc. modulate 

tissue functions, neuronal development and differentiation. The dopaminergic VTA neurons contribute to 

gene expression by posttranslational modifications of nucleosomal histones (68). Modifications of 

glutamine, Q side chains of proteins by TGM2 serve numerous functions; to name a few are, tissue integrity, 

cellular metabolism and G-protein signaling activities (71-83).  

Dopaminylation and serotonylation (hereafter, neurotransmitylation, NTM) of histone at H3Q5 are new 

findings both from Maze lab (68, 97); while dopaminylation is involved in regulation of aberrant neuronal 

gene expression patterns in the VTA in response to cocaine consumption (68), serotonylation of H3Q5  is 

context dependent. Pre-existing trimethylated histone H3 at K4 followed by unmodified Q5 (H3K4me3Q5) 

is the ideal substrate for TGM2 to serotonylate (Figure 1) which in vivo might activate chromatin for gene 

expression in eukaryotic cells. These findings reveal that neurotransmitters may be the right compounds 

for chemical modifications of histones, and glutamine (Q) joined the elite club of amino acids K, R, S to 

be counted. This invites Herculean task ahead to figure out whether NTM of histone is specific to neuronal 

genes or else contribute in other tissues.   Few important questions remain; (i) the accessibility of the Q at 

different sites of the histones, (ii) reversibility of the neurotransmitylation (NTM) of histone, and (iii) where 

the –NH3 goes? 
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Table –I: Prominent amino acids of nuclear histones those undergo posttranslational modifications and 

modulate gene expression. 

 

Amino 

acid 

Type(s) of modification(s) of 

the respective side chain 

Enzyme of the forward 

reactions (writers) 

Enzymes of the reverse 

reactions (erasers) 

 

 

 

K 

 

Acetylation Acetyltransferases 

(HATs) 

Histone deacetylases 

(HDACs) 

Methylation Histone lysine 

Methyltransferases 

(HKMT) 

Histone Lys demethylases 

(KDMs) 

Ubiquitilation Rad6 Ubiquitin proteases 

(UBPs) 

Sumoylation UBC9 ULP-related proteases 

S  

Phosphorylation 

 

Kinases 

 

Phosphatases T 

Y 

 

R 

 

Methylation 

Protein arginine 

methyltransferases (PRMT) 

Protein arginine 

demethylases (PADs), also 

some KDMs 

 

Q 

 

Methylation  

 

Fibrillarin as 

methyltransferase 

 

KDMs? 

Serotonylation Transglutaminase 2 

(TGM2) 

? 

Dopaminylation Transglutaminase 2 

(TGM2) 

? 
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Schematic and Figures with legends 

 

Scheme 1: Schematic view of the VTA Dopamine reward pathway. The ventral tegmental area (VTA) 

comprises heterogeneous cell types with diverse projections consisting of dopamine, GABA, or glutamate 

neurons.  VTA is one of the two major dopaminergic areas in the brain (adjacent, substantia nigra is the 

other). a. apparent locations of the organs of the reward system. b. The VTA neurones transport dopamine 

from the VTA to the prefrontal cortex (PFC), the nucleus accumbens (NAc), the amygdala (Amy), and the 

hippocampus (Hip), those are involved in reinforcing behavior. Several major efferents projects from the 

VTA in both the mesolimbic and mesocortical pathways. VTA dopamine neurons receives major portion 

of input from striatal and globus pallidus. See the text for further details (see also refs. 2-6, 50-53, 61 and 

68). Note that, the distribution of dopamine and non-dopamine axons within a given VTA projection 

differs target to target.  For example, and as depicted here, dopaminergic VTA projections are 85% to the 

NAc; ~12-15% to the PFC; and only 1–3% to Hip. 

 

 

Figure 1. Tissue transglutaminase 2 (TGM2) mediated transamidation reactions in dopaminergic and 

serotonergic neurone, (1) release of ammonia.  Histone 3 lysine 4 (H3K4) trimethylation (1a) triggers 

incorporation of serotonin at H3Q5 forming H3K4me3Q5ser (2a). TGM2 incorporates dopamine at H3Q5 

depositing H3Q5dop (2b). Enzyme(s) for reversal of both H3K4me3Q5ser and H3Q5dop to H3K4me3Q5 

and H3Q5 respectively are yet to be deciphered 

 

Figure 2. METABOLIC: Monoaminylation of proteins at glutamine (Q) residues are well established 

(reaction shown in figure 1.) and play crucial roles in signal transduction pathways regulating cellular 

metabolism and homeostasis. Monoamine chemicals like, histamine, serotonin and dopamine are important 

neurotransmitters. G-protein signaling is modulated by: histaminylation, Vowinckel et al., 2012 (81), and 

serotonylation, Walther et al., 2003 (99). TGM2 catalyzes inactivation of glyceraldehyde 3-phosphate 

dehydrogenase and alpha-ketoglutarate dehydrogenase in CAG-repeat diseases, Cooper et al., 1997 (85, 86). 

TGM2 mediated transglutamination inactivates mitochondrial aconitase in the Huntington patients brain, 

Kim et al. 2005 (88). 

EPIGENETIC: Modification of Q residues in histone tails influencing gene expression in vivo is emerging. 

Histone 3 glutamine 5 (H3Q5) dopaminylation (H3Q5dop) by TGM2 in the VTA region regulates gene 

expression in VTA neurons, Lepack et al., 2020 (68).  This is very exciting discovery in epigenetics, 

molecular biology and neurobiology that establish neurotransmission dependent and independent roles for 

nuclear in the reward system (68, see also 104). Serotonylation of histone H3 at glutamine 5 (H3Q5ser) 

augments RNAPII catalyzed gene expression, facilitating binding of TFIID4 with the combinatorial 

H3K4me3Q5ser sites, Farrelly et al., 2019 (97). The processing of H3K4me3 is executed by MLL and SET1 

family proteins (100, 101). The functional insights of H3K4me3Q5ser deposition in human embryonic 

stem cells, serotonergic neurons, developing mouse brain and cultured serotonergic cell is enhanced 

expression diverse array of genes require for cellular differentiation and signaling (97, see also 102, 103). 

Fibrillarin catalyse methylation of human histone H2A at Q 104 (H2AQ104me) enhances the transcription 

of rDNA by RNAPI. S-Adenosylmethionine (SAM) is the cofactor which donates the –CH3 group and 

converted to SAH (S-Adenosylhomocysteine). 
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Scheme 1. 

 

 
Figure 1. 
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Figure 2. 
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