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ABSTRACT 

Through in silico simulation of mutations and their effect on protein structure, we conclusively examine the impact 

of mutations along the amyloidogenic pathway in three steps: as factors which undermine the suppression of Aβ 

production from BACE-1; the inhibition of amyloid breakdown by neprilysin; and the aggregation of Aβ 

monomers through oligomeric and fibril stages. We verified the significance of mutations in miRNA that 

particularly complement with BACE1. We discovered novel mutations that impede most significantly on 

neprilysin function. And we examined the importance of mutations on the propensity of Aβ to aggregate. The 

results are significant: the framework and algorithm of the paper can be employed to make accurate predictions 

for patients from simple and widely accessible genetic data. Beyond that, given the ubiquity of proteins within 

our body, the functions for modelling miRNA suppression, predicting protein function and calculating protein 

aggregation also have widespread uses in all areas of human biology and medicine. 

1 Introduction  

Alzheimer’s disease (AD) is the most common neurodegenerative disease, affecting 55 million 

people globally (WHO). Its prevalence increases, with ageing being the most common risk 

factor among others. Approximately 73% of people in the US aged 75 or older are living with 

a neurodegenerative condition or at a high risk of developing one in coming years[1]. Victims 

of AD suffer memory loss, communication barriers and hallucination, leading to a gradual 

descent and regression in health, resulting in death. Since the first discovery of neuritic plaques 

by Dr Alois Alzheimer in 1904, the amyloid pathway as the pathogenic cause of Alzheimer’s 

Disease has been extensively studied both in vivo and in vitro. Similarly, there has been an 

effort to thoroughly analyse the genetics of AD. Yet this is often capped at correlative 

biomarkers such as PSEN1/2, without the linkage to the underlying biological processes. Yet, 

treatment of AD is severely limited and only provide symptomatic relief. The combination of 

genetic and environmental factors - be that socioeconomic, exposure to pollution or a stressful 

lifestyle - contributes towards the pathogenesis of AD. The constant increase in patients 

necessitates research to better the understanding of the backbone of Alzheimer’s as a 

prerequisite to discovering novel treatment methodologies.  
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There are two different pathways for the cleavage of Amyloid Precursor Protein (APP): 

amyloidogenic and non-amyloidogenic (Figure 1). Taking the latter first, we have the cleavage 

of APP by α-secretase, producing sAPPα (Aβ42), which is soluble and released into the 

intracellular space. This is followed by γ-secretase cleavage that forms a P3 protein, whose 

significance is barely known, and AICD, the intracellular component. On the other hand, the 

amyloidogenic pathway involves the sequential cleavage by β [8] and γ-secretase. β-secretase 

produces sAPPβ, a shorter variation of the product of the non-amyloidogenic pathway, 

Aβ40[2]. Therefore, the activity of β-secretase (BACE-1) sets off the amyloidogenic pathway 

and is thus paramount in the onset of Alzheimer’s, in particular, Early Onset AD.  

Secretases are mostly functional upon attaining the quaternary structure which is 

tetrameric[13], involving subunits coded for by presenilin 1 and presenilin 2 genes – whereby 

the mutations in these genes are associated with EOAD. It is believed that the driving factor 

behind the propensity of aggregation is the solubility of the Aβ fractions. In the monomeric 

stage, Aβ42 is more prone to aggregation than Aβ40, as it is less soluble[5]. Modifications to 

Aβ as a monomer impact its solubility; for instance, glycation, the addition of carbohydrates to 

the end chain of peptides, can affect the N-terminal structure of the protein.  

Neprilysin (NEP) is a metalloprotease, involving a singular zinc atom associated with the 

HExxH (His-Glu-x-x-His) binding motif which is critical for the cleavage action of amyloid-

beta. It is 749 amino acid residues long and transmembrane, with the extracellular domain 

extending from Thr49-Trp749[15]. Specifically, they cleave Aβ at the residues Glu3-Phe4, 

Gly9-Trp10, Phe19-Phe20, Ala30-Ile31, and Gly33-Leu34[11]. It has been reported previously 

that it is one of the crucial enzymes in cleaving the APP protein, thus showing a mitigatory 

effect on the propensity of APP to aggregate and form toxic oligomers and fibrils. There is 

sound evidence that NEP is the rate-limiting enzyme for Aβ degradation, and the inhibition of 

which, using thiorphan, increases Aβ levels.  

 

Figure 1: Illustration of amyloidogenic and non-amyloidogenic pathway  

https://preprints.aijr.org/


 

  

Wenqi Zhao, AIJR Preprints, 540, Version 1, 2024 

2 Methods 

2.1 Production of Aβ  

In this section, we examine the significance of mutations on miRNA fragments which prevent 

their ability to regulate BACE1 expression. We found significant differences in protein 

production and post-transcriptional regulation as a result of mutations on the complementary 

sequence in particular. The production of Aβ is hinged upon the dominance of the 

amyloidogenic pathway over the non-amyloidogenic counterpart. It is therefore the increase in 

β-secretase activity (BACE-1) that directly related with greater Aβ production. MicroRNAs 

(miRNA) have a crucial role in the post-transcriptional silencing and regulation of protein 

synthesis. There is a many-to-many mapping relationship between miRNA’s and the mRNAs 

being regulated. Oftentimes, there are 6-8 base pairs which complement with bases in the 3’ 

(or less commonly 5’) untranslated region (UTR) of the mRNA. There are 3 major steps within 

translation as we shall model, for which miRNA have the potency to undermine. Indeed, even 

Single Nucleotide Polymorphisms (SNPs) [3] can severely impact the ability for miRNA to 

carry out its function of, in this case, regulating BACE1 expression and mitigating the 

amyloidogenic pathway.  

2.1.1 Kinetic Model of Protein Production  

The first step, with constant rate 𝑘1, involves the 40S ribosomal subunit binding to the mRNA. 

This is followed by the recognition of the AUG motif by the subunit (complementary to the 

initiator tRNA in ribosomes). The rate of this is modelled as 𝑘2. Finally, we have the 

recruitment of the final initiation factor, the 60S subunit, after which translation initiation is 

complete, with reaction rate 𝑘3. The initial kinetic model is as follows:  

𝑑𝐴

𝑑𝑡
 =  −𝑘1𝐴 

𝑑𝐵

𝑑𝑡
 =  −𝑘2𝐵 +  𝑘1𝐴 

 
𝑑𝐶

𝑑𝑡
 =  −𝑘3𝐶 +  𝑘2𝐵 

𝑑𝐷

𝑑𝑡
 =  𝑘3𝐶 

 

A is a protein in stage 1, B in stage 2, C in stage 3 and D ready for elongation. With rates of 

reaction 𝑘1, 𝑘2 and 𝑘3 as 0.5, 0.2 and 0.2 [17], the expected reaction is shown in Figure 4. 

Previous computational models [17] validate and suggest that miRNA represses translation 

predominantly on the k3 reaction rate. This is because it is largely repressing translation at a 

late step, independent of the presence of a 5’ cap. Furthermore, as mentioned, mRNA carries 

out deadenylation of the Poly(A) tail and protein degradation, thereby undercutting the 

maximum yield of protein for the elongation process in addition to slowing down the rate.  
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Where A is a protein in stage 1, B in stage 2, C in stage 3 and D ready for elongation. With 

rates of reaction 𝑘1, 𝑘2 and 𝑘3 as 0.5, 0.2 and 0.2 [17], the expected reaction is depicted in 

Figure 4. Previous computational models [17] validate and suggest that miRNA represses 

translation predominantly during the recruitment of the 60s ribosomal subunit modelled by the 

reaction rate 𝑘3. This is because the miRNA largely represses translation at a later step, 

independent of the presence of a 5’ cap on the mRNA. Furthermore, the mRNA carries out 

deadenylation of the Poly(A) tail and protein degradation, thereby reducing the maximum yield 

of protein for the elongation process in addition to slowing down the rate.  

 

Figure 2: Expected rate of protein initiation in the ribosome in the absence of mRNA 

silencing vs the actual rate of protein initiation with mRNA silencing affecting the 

recruitment of the 60S subunit 

2.2 Cleavage of Aβ with Neprilysin  

2.2.1 Active Site  

Based on the simple “induced fit” model of enzyme function, the significance of a mutation’s 

impact on an enzyme’s binding affinity and thus its functional capacity is heavily related to the 

proximity of the conformational change to the HExxH motif at the heart of the active site. 

Therefore, as the first step, we create a simple mathematical abstraction for the significance of 

a mutation.  

𝑓(𝑥1, 𝑥0) = 𝐷(𝑥1, 𝐻) ×  δ(𝑥1, 𝑥0) ×  𝑃(𝑥1, 𝑥0) 

Where the function 𝑓(𝑥1, 𝑥0) calculates the significance of the mutation, given parameters 
(𝑥1, 𝑥0), the mutant amino acid the wild-type amino acid, respectively.  

2.2.2 Distance to Histidine Amino Acid  

𝐷(𝑥1, 𝐻) 

Given that the sequence of paramount importance in metalloprotease neprilysin is the HExxH 

motif, mutations closer to this active site are more likely to impact its ability in cleaving Aβ. 

Therefore, we calculate the distance in ̊Awithin the Protein Data Bank (PDB) file between the 

target (x1) and H residue. We used string searching for the HExxH binding motif, finding the 

first Histidine residue at the index 521. The visualisation is in Figure 7. Therefore, we examine 

the influence of mutations on APP that influences factors affecting their aggregation: alignment 
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similarity, net charge, solvent accessibility and β-sheet. We find significant effects that 

mutations can have on this process.  

2.2.3 Amino Acid Comparison  

δ(𝑥1, 𝑥0)  

The second metric we have in analysing the effect of mutant amino acids on the overall 

structure, and hence function, of neprilysin is the difference between the mutant and wild- type 

AAs on account of several metrics. First, we obtained hydrophobicity values from the Wimley-

White scale [20]. This is significant, since hydrophobic side-chains oftentimes force these 

particular amino acids into the interior of the molecule, where the hydrophilic ones cluster on 

the outside, as it is favourable for them to form hydrogen bonds with water and polar molecules. 

Indeed, vast conformational changes have arisen from even single AA polymorphisms, such as 

sickle cell anaemia where glutamic acid is substituted by valine. The latter is far more 

hydrophobic and hence reduces the overall solubility of haemoglobin, causing disease. Second, 

we gather the volume of the amino acids. Importantly, this influences the bending and folding 

of amino acid chains. Specifically, amino acids which are too large disrupt the positions of the 

groups that form bonds, be that disulfide bridges, hydrophobic or ionic bonds, with amino acids 

down the polypeptide chain as it folds. Third, we measure the isoelectric point (pI value) of the 

amino acid. This is because their charge at a given pH influences solubility and binding 

patterns. After gathering numerical values, we normalised them to the range −1 to 1, with the 

maximum and minimum being at each end.  

 

Figure 3: Distance between residues within Neprilysin and the Histidine Atom on residue 521 

- where the active site is located 

𝑓(𝑥) =
2(1 − 𝑚𝑖𝑛(𝑥))

𝑚𝑎𝑥(𝑥)  −  𝑚𝑖𝑛(𝑥)
 

With that for each column, we plotted a 3-dimensional graph of each amino acid (Figure 4). 

To calculate the potential for structural difference, we calculate the Euclidean distance between 

the wild-type and mutant amino acids.  
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2.2.4 Mutation Rate  

Finally, we need to calculate the Probability that a given mutation does occur (since the 

simulation for mutations is done at a random rate, we need to reverse engineer the process). 

This is estimated based on two parameters. First, the number of nucleotide substitutions that 

needs to occur. That is, a mutation from Phenylalanine (coded for by UUU) to Leucine (coded 

for by UUA) is much more likely to happen than from Phenylalanine to Alanine (coded for by 

GCU). Second, there is an observed and intuitive difference between purine or pyrimidine 

substitutions: from A to G and vice versa, or from C to U and vice versa (deemed a transition 

mutation), and purine to pyrimidine substitutions (called transversions) [14]. This is simply 

because of the larger structural difference as purines have 2 nitrogenous rings while pyrimidine 

only have 1. Indeed, it is observed that transitions are 1.697 times more frequent than 

transversions. Thus, a simple formula for calculating the ease of mutation is done through  

 

Figure 4: 3D visualisation of similarities of Amino Acids 

𝑀 = (𝑀𝑡𝑣 + 1.697 ×  𝑀𝑡𝑠) 

 

Where M = number of mutations, 𝑀𝑡𝑣 = number of transversions and 𝑀𝑡𝑠 = number of 

transitions. The visualisation of the ease of mutation is in Figure 5.  
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Figure 5: With reference amino acid as Isoleucine (I), the ease of mutation between amino 

acids based on the number and type of nucleotide substitutions needed in the base code. 

2.3 Aggregation of Aβ  

Mutations are a rare, random change in DNA, that alters the nucleotide sequence of a gene, 

which in turn translates to changes further down the transcriptional and translational process. 

Theoretically, a singular mutation has the potential to create catastrophic changes. For example, 

sickle cell anaemia occurs when glutamic acid, a polar amino acid at the surface of the β−chain, 

is replaced by valine, which is non-polar. This makes the hydrophilic outside of the globular 

haemoglobin much less soluble, resulting in clots and other severe symptoms.  

2.3.1 Data Acquisition and Processing  

1. We obtain files of the desired genes in FASTA format, from the National Centre for 

Biotechnology Information (NCBI) [16]  

2. Using the Biopython Library [4], we perform transcription of the DNA into mRNA, 

based on the A-U, C-G, T-A complementary base-pair rules.  

3. We create functions that simulate the three major mutations: substitution (the changing 

of one nucleotide to the other), insertion and deletion. The function for substitution 

takes in an mRNA sequence and a mutation rate as parameters. The function for 

insertion takes in the base mRNA sequence, the number of insertions as well as the 

maximum length of inserted nucleotide sequence. The function for deletion takes in the 

base mRNA sequence, as well as the maximum length and number of deletions.  

4. A selection of random mutations are simulated on the mRNA, with differing 

magnitudes in rate. The resulting sequence is translated into a peptide chain based on 

the genetic code for homo sapiens.  

5. We output the resulting protein sequence to Robetta, software developed by the 

University of Washington that uses comparative modelling to infer a protein’s tertiary 

structure (in a Protein Data Bank (PDB) file format) from its amino acid sequence.  
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2.3.2 Comparing Structural Similarities  

In order to interpret the effect mutations at the nucleic level has on the macro-molecular 

structure and function of proteins, we compare these similarities of mutated proteins based on 

several simplifying assumptions  

1. The most basic assumption is known as Anfinsen’s dogma, where for small globular 

proteins, the secondary structure is almost entirely dependent on the primary amino 

acid structure[6]. Therefore, we employ a modified BLAST function that compares the 

percentage alignment of two sequences. First, we align and superimpose the sequences, 

and then calculate the number of amino acids at each position which are the same.  

2. To examine the differential likelihood of aggregation, we calculate the Half Sphere 

Exposure of proteins. This measures the solubility of the protein through the number of 

Cα atoms within a given radius of a Cα residue (split into a top and bottom half). This 

explains the accessibility of solvent molecules, such as water, which impacts its 

solubility [7].  

3. Furthermore, we calculate the net charge of a protein using the Henderson-Hasselbach 

Equation [19]. For proteins Histidine (H), Arginine (R) and Lysine (K) which can 

become protonated to form NH3+, the concentration of which that would be positively 

charged at a given pH (HA) is  

𝑝𝐻 = 𝑝𝐾𝑎 + log 
1 − 𝐻𝐴

𝐻𝐴
 

For acidic proteins Aspartic Acid (D) and Glutamic Acid (E), the proportion that is 

negatively charged is calculated by the same formula, except we are interested in 1−HA. 

Thus, the function for net charge calculates the difference between the positive charge, 

a sum of the number of H, R, K multiplied by their respective protonated rates, and the 

negative charge, a sum of the number of D, E multiplied by their respective 

deprotonated rates.  

4. Finally, we examine the concentration of β-pleated sheets. These are heavily associated 

with a higher likelihood of protein aggregation [10] since the edge sheets form H bonds 

with neighbouring edge sheets easily. Therefore, a higher concentration of β−sheet 

structures is an important factor in the likelihood of aggregation. Here, we use the DSSP 

(Dictionary of Secondary Structure of Proteins) library to analyse the percentage of this 

secondary structure.  

3 Results and Discussion 

3.1 The role of miRNA mutations in the Production of Aβ  

We first simulated mutations in the miRNA (mi-R29b-1 [9]) sequence. For both the mutated 

and original miRNA sequence, we calculate the maximum complementary alignment with the 

BACE1 enzyme - where the miRNA would bind to in order to inhibit mRNA expression. The 

percentage difference in the alignment sequences were then compared. This investigated the 

potency of mutations to disrupt the site of mRNA inhibition. This difference, visualised in 

Figure 5, will therefore impact miRNA’s ability to decrease k3 and repress BACE1 production.  

https://preprints.aijr.org/
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Figure 6: Right Graph: Scatter plot of percentage alignment (x axis) versus number of 

mutations (y axis). Left Graph: Line graph of median percentage alignment (x axis) versus 

number of mutations (y axis). 

 

Figure 7: Effect of miRNA mutation on the rate of protein production. The figure is zoomed 

in on the right for more clarity 

Therefore, we can suggest based on our observations that the binding site for miRNA is 

impacted significantly as the number of mutations increase. Based on that, we model the 

kinetics of protein production with updated constants. That is, the percentage ’un- alignment’ 

(1 - percentage alignment) is equal to the percentage decrease in k3 and k4. Thus, a lower 

percentage accuracy because of mutations will lead to less of an ability to reduce the constants 

in the model.  

Ultimately, we can see a significant degree of impact of miRNA mutations on its potency to 

regulate protein expression in Figure 6. All the mutated forms of miRNA leads to a greater 

alignment with the original kinetic model, with more mutations broadly leading to more 

similarity, although he statistical significance of that is reasonably low.  

3.2 Significant mutations for Neprilysin Cleavage  

We normalised the values to between 0 and 1, where any value closer to 1 is equivalent to a 

more impacting mutation (smaller distance to H residue, larger Euclidean distance on AA 

visualisation, easier mutation). We generated a set of 100 mutations at random indices with 

random final amino acids. Out of this list, the most substantial mutations, which align with our 

expectations from the start, are illustrated in. They are:  
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Index and AA Distance to H AA similarity Ease of Mutation Final Value 

547 D → W 0.975 0.792 0.917 0.708 

419 K → L 0.879 0.978 0.800 0.688 

497 R → E 0.786 1.000 0.872 0.685 

511 F → K 0.634 0.965 0.900 0.551 

131 A → K  0.767 0.808 0.844 0.522 

We then simulated each of those mutations using Robetta, a protein structure prediction 

algorithm, and indeed found significant (for the expectation of SNPs) conformational 

differences to the original Neprilysin PDB file, justifying our conclusion.  

 

Figure 8: Significance of Final Mutations 

3.3 Effect of mutations on aggregation of Aβ  

3.3.1 Mutation vs Alignment Similarity  

From the above graphs we see a strong negative correlation between the rate of mutation 

(calculated as the rate of substitution, number of insertions and number of deletions), 

supporting the claim that mutations are a significant cause in disrupting protein structure and 

causing aggregation. Furthermore, the production of short peptide chains can bind and 

aggregate with each other. However, there is a strong degree of unpredictability. First, 

mutations in the DNA which change the reading frame are likely to generate far more structural 

disparity. Hence, we spikes in the graphs which are similar to the original APP protein, because 

the mutation only changed singular amino acids instead of the structure as a whole. 

Furthermore, mutations which introduce premature stop codons (UGA, UAA, UAG) 

significantly alter the structural conformation of the proteins.  

 

https://preprints.aijr.org/
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Figure 9: Simulation of mutation rate vs alignment accuracy 

 

Figure 10: Simulation of mutations rate against net charge 
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3.3.2 Mutation vs Net Charge  

A low net charge leads to a decrease in solubility (for example, ionic compounds are far more 

soluble as the charged components can interact with the polar water molecules) [12]. Therefore, 

a small net charge is characteristic of a protein’s likelihood of aggregation. From the 

simulation, we see differing results. When the number of insertions increase, the net charge 

quickly concentrates to being very close to 0. For the number of deletions, we see the same 

pattern of dips that occur every time a frame shift does not happen. For substitution mutations, 

the net charge spikes upwards to 0 every so often, without a clear pattern. Therefore, although 

a huge degree of uncertainty and fortuity exists, there is a significant likelihood mutations of 

all kinds (they do not even need to happen at a large rate, as indicated by the cluster of spikes 

in the first graph), can lead to the production of clusters of protein fragments that are insoluble, 

which clump and aggregate.  

3.3.3 Mutation vs Solvent Accessibility and β-sheets  

Here, it is very unfair and biologically insignificant to simulate mutations to the same extent 

as before; therefore, we minimise the quantity of mutations from 1 to 10. Using prediction 

software Predict Protein [18], predictions based on the mutated amino acid sequence were 

made. However, given the small mutation size, no severe differences or effects were observed. 

The images are the secondary structure composition (α-helices, β-strands and other) and 

solvent accessibility of sequences with 1, 2 and 10 mutations, respectively.  
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4 Conclusion  

4.1 Significance  

Mutations along the amyloidogenic pathway are important on the multitude of processes that 

affect Alzheimer’s disease. Our research not only validates this, but, more importantly, provide 

frameworks of pre-emptive risk assessments. Patients’ genetic data can be analysed by the 

formulae derived in this paper to provide insight onto the likelihood of pathogenesis. 

Furthermore, the genetic data of entire demographics can be screened for the mutations we’ve 

outlined to be the most harmful.  

4.2 Limitations and Further Development  

The novelty of mutations means that the work here is theoretical - there simply are not enough 

people with or without such mutations to experimentally verify the level of Aβ biomarkers in 

their brain because of these mutations. Furthermore, we made many simpli- fying assumptions. 

In the examination of miRNA and BACE1, we assumed that the impact on protein production 

is directly proportional to the number of mutations within the com- plementary strand: this may 

overlook nuanced scenarios (consecutive mutations, types of mutations etc.) that could have 

differing effects. In the second section, there were perhaps more metrics we could have 

examined to model the importance of amino acid mutations more accurately. Furthermore, 

perhaps different weights on the three metrics (which are currently assumed to be equally 

important) would be more representative.  
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[9] S ́ebastien S H ébert et al. “Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-

secretase expression”. In: Proceedings of the National Academy of Sciences 105.17 (2008), pp. 6415–6420.  

[10] Joelle AJ Housmans et al. “A guide to studying protein aggregation”. In: The FEBS Journal 290.3 (2023), pp. 554–583.  
[11] Steven Howell, Josephine Nalbantoglu, and Philippe Crine. “Neutral endopeptidase can hydrolyze - amyloid(1–40) but shows no effect 

on -amyloid precursor protein metabolism”. In: Peptides 16.4 (1995), pp. 647–652. doi: 10.1016/0196-9781(95)00021-b.  

[12] Ryan M Kramer et al. “Toward a molecular understanding of protein solubility: increased negative surface charge correlates with 
increased solubility”. en. In: Biophys. J. 102.8 (Apr. 2012), pp. 1907– 1915.  

[13] Ji Young Lee et al. “Allosteric modulation of intact γ-secretase structural dynamics”. In: Biophysical journal 113.12 (2017), pp. 2634–

2649.  
[14] Michael Lynch. “Rate, molecular spectrum, and consequences of human mutation”. In: Proceedings of the National Academy of Sciences 

107.3 (2010), pp. 961–968.  

[15] NN Nalivaeva, IA Zhuravin, and AJ Turner. “NEPRILYSIN expression and functions in development, ageing and disease”. In: 
Mechanisms of Ageing and Development 192 (Dec. 2020), p. 111363. doi: 10.1016/j.mad.2020.111363.  

[16] National Center for Biotechnology Information (NCBI). url: https : / / www . ncbi . nlm . nih . gov / 

gene?Cmd=DetailsSearch&Term=351.  
[17] Tracy Nissan and Roy Parker. “Computational analysis of miRNA-mediated repression of translation: implications for models of 

translation initiation inhibition”. In: Rna 14.8 (2008), pp. 1480–1491.  

[18] “PredictProtein - Predicting Protein Structure and Function for 29 Years”. In: Nucleic Acids Research 49.W1 (May 2021), W535–W540. 
issn: 0305-1048. doi: https://doi.org/10.1093/nar/gkab354  

[19] Ronald J. Tallarida and Rodney B. Murray. “Henderson—Hasselbalch Equation”. In: Manual of Phar- macologic Calculations: With 

Computer Programs. New York, NY: Springer New York, 1987, pp. 74– 75. isbn: 978-1-4612-4974-0. doi: https://doi.org/10.1007/978-
1-4612-4974-0_24 

[20] William C Wimley and Stephen H White. “Experimentally determined hydrophobicity scale for pro- teins at membrane interfaces”. In: 
Nature structural biology 3.10 (1996), pp. 842–848.  

https://preprints.aijr.org/

