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A B S T R A CT  

The objective of this paper is to provide a mathematical model to construct a barrier that may be useful 

to prevent the penetration of different viruses (e.g. SARS-COV-2) as well as charged aerosols through the 

concept of electrostatic charge negotiation. (Fusion for the opposite types of charges and repulsion for 

the similar types of charges). Reviewing the works of different authors, regarding charges, surface charge 

densities (σ), charge mobility (μ) and electrostatic potentials of different aerosols under varied 

experimental conditions, a similar intensive study has also been carried out to investigate the electron 

donating and accepting (hole donating) properties of the spike proteins (S-proteins) of different RNA and 

DNA viruses, including SARS-COV-2. Based upon the above transport properties of electrons of 

different particles having different dimensions, a mathematical model has been established to find out the 

penetration potential of those particles under different electrostatic fields. An intensive study have been 

carried out to find out the generation of electrostatic charges due to the surface emission of electrons 

(SEE), when a conducting material like silk, nylon or wool makes a friction with the Gr IV elements like 

Germanium or Silicon, it creates an opposite layer of charges in the outer conducting surface and the 

inner semiconducting surface separated by a dielectric materials. This opposite charge barriers may be 

considered as Inversion layers (IL). The electrostatic charges accumulated in the layers between the Gr IV 

Ge is sufficient enough to either fuse or repel the charges of the spike proteins of the RNA, DNA viruses 

including COVID-19 (RNA virus) or the aerosols. 
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1)  Theoretical Background, Journal study and Investigation:  

1.1 Calculation of Charges of Different Aerosols and Graphical Analysis:   

A study by M.V. Rodrigues1 et al on the values of charges accumulated on different aerosol particles 

found, that the accumulation of the charges and charge densities(σ) largely depend upon the Stokes 

diameter of the particle. The variation of charges with the Stokes diameter has been found most likely to 

be following a linear graph with a definite slope. The results have been used extensively in our study.  

However, it has also been observed that for a larger particle having diameter more than d > 4 μm, 

abruptly different levels of charge density are present. 

In the experimental setup consisting of an ECC (Schematics in adjoining figure), a set of values for the 

charge accumulation on dry egg dust particles and their respective Stokes radius was found. It is referred 

below in Table 1. 
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Table 1 

Stokes Diameter 

[10- 6m] 

Charge[10-17C] 

1.7 0.5 

2.1 0.5 

2.5 1.2 

3.2 1.6 

4.8 3.0 

 

 

Figure I: Particle charge as a function of Stokes diameter for aerosol (Concentrated dry egg dust 

particle - Data set in Table 1) 

The data from Table 1 is fitted to the equation 1.1.1 (by Jonhston et al. 1987): 

|Q/e|=Adp
B                                                              [1.1.1]  

Where e is the elementary charge of an electron and A is the median number of elementary charges of 

magnitude e present on a particle of diameter 1 μm., It is found that, the value of B is  nearly equal to 2 

and also at per as suggested by Jonhston. (Range between 1 and 2).  

This expected range of B is also applicable for calculating the charge of any small particles. 
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1.2 Theoretical investigation for the factors, influencing the charge on SARS-COV-2 surfaces: 

The accumulation of charges on the surface of SARS-COV-2 can be attributed by the following four 

factors: 

• The size and shape of the virus: Literature study [Angeletti et al4] suggests, SARS-COV-2 has 

a spherical or ellipsoidal shape having average diameter in the range of 60 nm to 140 nm. This 

makes a prediction that the pattern of charge on the surface of SARS-COV-2 is similar to that of 

aerosols as established in 1.1. 

• The (pKa)s of the protein on the surface:  At the isoelectric point of a protein, there is an 

equivalent distribution of negative and positive charges, leading to a neutral response to a 

potential difference. However, if the pH be lowered from the isoelectric point, it is found that, a 

bias is created towards the centre of positive charge of the protein. The pKa’s could be derived 

from the pH values of the titration curve for the S(spike)-protein of the SARS-CoV-2 using the 

Henderson–Hasselbalch equation (from titration analysis): 

         pH = pKa + log ([conjugate base]/[weak acid])     [1.2.1] 

To establish this concept of the influence of surrounding pH on the surface charge of a virus, 

similar experiments had already been carried out also over the other virus strains.  

Relevant examples: 

Poliovirus 1 (strain LSc) was established to be isoelectric in nature at pH level of 6.6. [Zerda et 

al5].  A second strain of poliovirus 1 (strain Brunhilde) had been found isoelectric at the level of 

pH 7.1. Phage MS-2 was isoelectric at pH 3.9. Also, reovirus type 3 has been reported to be 

isoelectric at pH 3.9 by column focusing techniques [Zerda et al5]. Hence, it can be concluded 

that, there is a tendency of viruses to accumulate different charges on the surface area at different 

pH levels. 

• The protein size of the outermost spikes of the virus: Also considering that the 1255 long 

amino acid sequence of the S-protein has been found and the corresponding possible oxidizing 
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state of the contributing amino acids can be visualized, one may actually determine exactly how 

much charge is accumulated on each protein subunit at a particular pH level.  

As stated earlier, actual fractional dissociation (αi) of any group which can be ionized is related to 

pH by the Henderson−Hasselbalch equation: 

pH = pKi + log [
𝜶𝐢

𝟏−𝜶𝒊
]       [1.2.2] 

Where, pKi  may be calculated if αi at corresponding pHs are known. The pKi depicts the  

negative logarithm of the effective dissociation constant. In the usual charge determination 

procedure [Jakubke and Jeschkeit, 1977; Skoog and Wichman, 1986]., the pKi for each type 

of ionizable group is assigned a magnitude. The verified knowledge of the amino acid sequence 

of a protein is used to calculate the net charge, zP, as -(zP)i, where the charge of protein arising 

from ni ionizable groups of type i, (zp)i, is given by: 

(zP)i = ni zi αi       [1.2.3a] 

where the ionizable group, i, is anionic (zi is negative) 

and,                                            (zP)i = ni zi (1 - αi)                                                                 [1.2.3b] 

where, the ionizable group, i, is cationic (since, zi is positive). 

However, pKi cannot be assigned a fixed magnitude because of its dependence on the overall 

charges of the protein. It is more difficult to dissociate a proton from a negatively charged 

molecule than from one with a net positive charge. This variation of pKi can be taken into 

account [Compton and O’Grady, 1991] by means of the theoretical expression for proton 

dissociation that has been in existence for over 80 years [Linderstrøm-Lang 1924; 

Linderstrøm-Lang and Nielsen, 1959]. Specifically, pKi can be expressed by: 

pKi = (pKint)I – 0.868 wzp        [1.2.4] 

The Spike protein (S Protein) is a large type of transmenbrane protein ranging from 1160 amino acid for 

Avian infectious Bronchitis virus (IBV) and upto 1400 amino acids for Feline Corona virus (FCo) 

[Taylor Heald-Sargent, et al21]. It also has been revealed from different studies of Donald J.Winzor7 
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and Harold P. Erickson8 that, approximate numbers of electrons can effectively be calculated from the 

ratio of the mass of the spike proteins and that of the amino acids since it may be considered that each of 

the amino acid can carry maximum a single donating or accepting charge. (depending upon their shapes 

and sizes). The ultimate structural understanding of a protein comes from an atomic-level structure 

obtained by X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, 

structural information at the nanometer level is frequently invaluable. Hydrodynamics, in particular 

sedimentation and gel filtration, can provide this structural information, and it becomes even more 

powerful when combined with electron microscopy (EM). 

A hypothetical visualization is that if we consider one charged site per ‘n’ amino acids at a particular pH, 

the number of free electrons present per nano meter length of spike proteins remain in the order of 

(1400/n) and the value of the charges per nano meter length of the spike may be of the order of 1.6 X 10-19 

X (1400/n) = (2240 X 10-19/n) C. (Experimental determination of the value of n is beyond the scope of 

this paper and is strongly recommended by the Authors). Therefore, at a particular pH 

Charge per nm length of spike protein = (2240 X 10-19/n) C                       [1.2.5] 

Considering the above values, a mathematical model has been established in 1.3 to find out the charges of 

the spike proteins of different lengths ranging from 8.0 nm to 10.0 nm for SARS-CoV-2. It has been 

revealed by [Zerda et al5]. Therefore, it can be predicted that, the spike proteins of SARS-CoV-2 shows 

measurable electron donating or accepting capabilities. 

• Maintenance of Membrane Potential across Enveloping protein:  

If we look at the enveloping proteins of the SARS-CoV, refereeing to the following research by Dewald 

Schoeman et al45., we have found that, the Envelope Proteins (E-proteins) have a capability to maintain a 

neutrality through the membrane potential of their own, till a considerable amount of charge difference is 

created when the structure of whole envelope collapses. 

The COV E protein is a short, integral membrane protein of 76–109 amino acids, ranging from 8.4 to 12.0 

kDa in size. The primary and secondary structure reveals that, E protein has a short, hydrophilic amino 

https://preprints.aijr.org/
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terminus consisting of 7–12 amino acids, followed by a large hydrophobic Trans Membrane Domain 

(TMD) of 25 amino acids, and ends with a long, hydrophilic carboxyl terminus, which comprises the 

majority of the protein. The hydrophobic region of the TMD contains at least one predicted amphipathic 

α-helix that oligomerizes to form an ion-conductive pore in membranes. 

Amino Acid Sequence and Domains of the SARS-CoV E Protein. Amino acid properties are 

indicated: hydrophobic (red), hydrophilic (blue), polar, charged (asterisks) 

Comparative and phylogenetic analysis of SARS-COV E revealed that, a substantial portion of the TMD 

consists of the two nonpolar, neutral amino acids, valine and leucine, lending a strong hydrophobicity to 

the E protein. The peptide exhibits an overall net charge of zero, the middle region being uncharged and 

flanked on one side by the negatively charged amino (N)-terminus, and, on the other side, the carboxy 

(C)-terminus of variable charge. The C-terminus also exhibits some hydrophobicity but less than the 

TMD due to the presence of a cluster of basic, positively charged amino acids. 

An investigation regarding maintenance of this membrane potential had been done in case of Semiliki 

Forest Virus [Andre V. Samsonov et al6 ] which is also an RNA virus, where it was established that, at a 

relatively positive charge, the potential barrier of the E1 and E2 envelope had been collapsed and the 

virus was spilled out by it’s contents. Hence, it might be abstracted that coronavirus will also show 

similar results (Experimental determination of which is beyond scope of this theoretical work.) and that, 

there is a tendency among RNA viruses to develop (by any process) a general neutral Hydrophobic nature 

until the potential difference is very high, when the envelope system collapses. 
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1.3 Calculation of the charges of the S-proteins of different coronaviruses viruses including SARS-

COV-2 based on similarity to aerosols and their Graphical analysis:  

The virus responsible for COVID-19 is SARS-CoV-2 which belongs to the category of β corona virus. 

The structure of these viruses are found mostly spherical or ellipsoidal in nature having diameter in the 

range of 60nm to 140 nm, additionally having spikes in the range of length 8 nm to 10 nm. [Point to be 

noted: The aerosol particles referred to in 1.1 also have a diameter in the range of 50 nm to 100 nm.] 

It should be considered here that the S-protein in the spikes of the coronavirus is essentially a complex 

folded structure of a chain formed from the the S gene that comprises an ORF encoding a protein of 1353 

amino acid residues, with a predicted molecular weight of 149,918 (S Mounir 1, P Labonté, P J Talbot). It 

tends to have different charge accumulations and configurations in different ph levels of the surroundings, 

unlike simple inorganic particles of aerosols. 

Now, reaction to pH level is actually generated due to the difference of electric potential energy level of 

an electron from the energy level of the 1s orbital of the H+. Similar possible different energy state of 

electron is obtained from bringing a molecule near to a charged surface. Hence this similarity has been 

exploited in this investigation. According to the recent research work5,7, mutation in the spike protein is 

probably responsible for jumping this virus (after mutation) from species to human and [Angeletti et al4] 

proposed that the ORF1ab is the largest gene in SARS-CoV-2 which encodes the pp1ab protein and 15 

nsps. This means that a structure forming such a major bulk of the virus is expected to have significant 

effects on the charge accumulation on the virus surface, behaving in closed spaces not unlikely to that in 

certain pH’s.  

The charges of the spike proteins have been measured in different laboratories by different methods but 

all of them have established a concrete correlation with the length and diameter of the spike proteins. 

However, it has been found that in most of the cases, the level of accumulation of charges show saturation 

beyond a certain length of the S-proteins. A possible explanation would be due to the destructive field 

interference of similar charges. 

https://preprints.aijr.org/
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Presented below are some sets of data furnished from equation [1.2.5] with minimal standard deviation to 

extrapolate viable charge concentrations on coronaviruses: 

Accumulated charges per nm length of S-protein spikes on Coronavirus at a particular pH 

(S-protein in the range of 8 nm to 10 nm) 

Spike length 

(nm) 

(Charge X n) 

(X 10-19 C) 

8.1 1.296 

8.2 1.311 

8.3 1.318 

8.4 1.324 

8.5 1.334 

8.6 1.366 

8.7 1.372 

8.8 1.391 

8.9 1.401 

9.0 1.412 

9.1 1.443 

9.2 1.461 

9.3 1.472 

9.4 1.481 

9.5 1.501 

9.6 1.512 

9.7 1.532 

9.8 1.544 

9.9 1.564 

10.0 1.589 
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Figure II: Particle charge as a function of Spike Length of SARS-COV-2 

Here, it can be seen that, the charge of the S-protein is predicted to vary linearly with spike length at a 

particular pH. 

2)           Mathematical model developed for calculating net charge on the surface of a single virus: 

2.1 The factors affecting charge formation: 

The effects due to various factors affecting the charge are listed below in the form of equations stated 

beforehand: - 

i. Due to size of virus: (From 1.1.1) 

 |Q/e|=Adp
B                                                                                 

ii. Due to interaction of S-protein with surrounding pH (from 1.2.3a): 

                     (zP)I = ni zi αi        

And from [1.2.3b]   (zP)i = ni zi (1 - αi)                                                                      

From [1.2.2]   pH = pKi + log [
𝛼i

1−𝛼𝑖
]                                  

From [1.2.4]  pKi = (pKint)I – 0.868 wzp                   
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From the above four equations, we may derive a relation between the net charges on protein with the 

surrounding pH if pKi is known: 

pH = [(pKint)I – 0.868 wzp] + log [
((zp)i/ni zi)

1−((zp)i/ni zi)
]          for anionic ionisable group[2.1.1a] 

pH = [(pKint)I – 0.868 wzp] - log [
((zp)i/ni zi)

1−((zp)i/ni zi)
]                 for cationic ionisable group[2.1.1b] 

2.2 Derivation of probable formula to predict charge formation on virus: 

At the isoelectric point of the S-protein of the virus, Equation 1.1.1 is the only factor affecting the charge 

formation. However, when the virus is in a different pH level from that of the isoelectric points of S-

protein, Equation 2.1.1a and equation 2.1.1b are also applicable which affects the formation of charges. 

Hence at a particular pH, incorporating both the equations, the following mathematical model has been 

established. 

From 1.1.1,                        Q = Aedp
B                                                         

From 2.1,                         pH = [(pKint)I – 0.868 wzp]±log [
((zp)i/ni zi)

1−((zp)i/ni zi)
] 

      (pH-(pKint)I+0.868wzP  ) = ±log [
((zp)i/ni zi)

1−((zp)i/ni zi)
] 

      e{± (pH-(pKint)I+0.868wzP  )} = [((zp)i/ni zi)-1] -1 

       (zP)i =  (ni zi)[1 + e{± (pH-(pKint)i+0.868wz
p
  )}]^(-1)                 [2.2.1] 

Here an assumption is made that, the charge formation on the S-protein due to pH change shall not affect 

the inherent tendency of the virus.  

Thus, if the total charge at a particular pH on the virus be Qtot, then from Equation 1.1.1 and Equation 

2.2.1, it’s value may be expressed as, 

Qtot = Q + [(zp)i]{(πdP
2)k} 

Where k is the number of spikes per unit surface area of the virus.  

https://preprints.aijr.org/
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However, this value is not determined and the authors strongly suggest an experimental determination of 

this value 

Qtot =   Aedp
B + [(ni. zi)[1 + e{± (pH-(pKint)I+0.868wzP  )}](-1)] {(πdP

2)k} 

 Qtot =   (Ae)dp
B +([(nizi)[1 + e{± (pH-(pKint)I+0.868wzP  )}](-1)] {πk})dp

2  [2.2.2] 

Here it can be observed that, at a particular pH, the Qtot  is still an exponential function of the diameter of 

the virus. 

Now, if we relate the charge of the virus to the dry egg dust aerosol, it is expected to show similar types 

of properties as the virus is also behave like a dry egg dust particle, which is a rich in protein. Thus, a 

value of B nearly equal to 2 can be expected here. Assuming B to be almost equal to 2, in this case the 

equation may be simplified for relatively smaller values of dP as follows: 

At a particular pH level, 

Qtot =   (Ae + K) dP
2 

Where, K = [(nizi)(1 + e{± (pH-(pKint)I+0.868wzP  )})(-1)] (πk) 

                                         Qtot = χdp
2                                         (2.2.3) 

Where, χ = Ae + [(nizi)[1 + e{± (pH-(pKint)I+0.868wzP  )}](-1)] (πk)   

This parameter ‘χ’ may be experimentally determined through suitable procedure. Hence, it would 

provide a fairly accurate prediction of the net charge on the surface of a virus at a particular pH level 

following the lines of this mathematical model.  

Now, a particular potential difference may show very similar effect on ionizing proteins at a particular 

pH. Hence, this model may be extended for the calculation of charges on a virus surface under the 

https://preprints.aijr.org/
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influence of a particular potential gradient. In that case, let the parameter be ‘C’ (To be experimentally 

determined) and the equation be as follows: 

Qtot = Cdp
2                       (2.2.4) 

Fig III: This is a demonstration of nature of increase of Qtot(depicted in vertical axis) with respect to 

dP(depicted in horizontal axis) 

3)         Prospective model of the potential barrier to stop viruses: 

3.1 Formation of surface charge density (σ) over IL as a function of time:  

The electrostatic charges form due to the surface emission owing to the frictions between the layers of 

semiconducting materials like Ge with the conducting materials like nylon, wool. 

When the conducting materials like wools  make friction with a semiconducting Gr IV materials, it shows 

a surface emission of electrons and the charges remain accumulated at the outer conducting layers since 

the middle layer of the mask is a semiconductor and is separated by an effective dielectric medium.  

The charge densities per square cm area(σ) follow empirically the growth of charges equation in a 

capacitor.  

σ =  [εμNf/4πr2] [∫(1 – e-t/CR)dt] [(dS/dx)]      [3.1.1] 

Where, ε is the permittivity of the medium, μ is the coefficient of friction between the two layers, Nf is the 

normal force acting over the surface depending upon the rate of movement, 4πr2 is the surface area and dx 
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is the separation distance between the conducting and semi conducting surface separated by the dielectric 

materials. 

Given below is a graphical representation of 3.1.1  

 

Fig III: Variation of accumulation of charge densities(σ) per cm-2 with time in the IL due to average 

movement of 50 cm/s 

Clearly, the density of accumulated charge is a time dependent, area dependent and movement dependent 

function. The produced charges will form an inversion layer (IL) at the outer and inner surface due to the 

induction. However the charge accumulation attains a finite quantity after a certain period of time, as can 

be seen from Fig III. 

3.2 Comparison of static charges produced in the layers of mask (IL) and the surface of the viruses 

and/or the air-borne aerosols:  

From the above studies it is clear that, the accumulation of charges per square cm area of a conducting bi 

layer due to the surface emission of electrons in normal movement is at least 106 times more than the 

charges on surface of viruses including SARS-CoV-2 and also the charge density is much higher than the 

charges accumulated in the concentrated dust particles of normal ranges.  
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Therefore, it may be concluded that, due to the surface emission of electrons, the IL of a mask can 

effectively trap, neutralize or repel the the viruses and/or the charged aerosols which might be carrying air 

borne viruses. 

4)      Conclusion:  

The charge accumulation on the surface of a virus is established to be in accordance with the Equation 

2.2.2: 

Qtot =   (Ae)dp
B +([(nizi)[1 + e{± (pH-(pKint)I+0.868wzp  )}](-1)] {πk})dp

2 

Which has been simplified with some basic assumption to Equation 2.2.3: 

Qtot = χdp
2                                                                                                                            

( Where, χ = [Ae + ([(nizi)[1 + e{± (pH-(pKint)I+0.868wzP  )}](-1)] {πk})]    

Using a derivation from this mathematical model, the model of a protective barrier has been established 

as follows: 

A three-layer mask can be produced to prevent the immediate infections of DNA, RNA viruses including 

SARS-COV-2 and others because the electric charge accumulation of the RNA viruses is much less than 

the electrostatic charges accumulated in the layers of the mask within few minutes. In the inner surface, a 

cotton type non conducting material can be used which will work basically as a nonconductor so that the 

electrostatic charges produced inside the two layers does not drain out through surface of the 

(human)body. Additionally, the cotton layer may be effective to protect the skin from electrostatic 

thermal radiation. 

Frictions between the middle and the outer layers, where the hydrophobic conducting and semiconducting 

materials are used, effectively lead to accumulation of the static charges. 

The rate of accumulation of charges increase with the increase of friction but come to a saturation level 

following the model of growth of charges in a capacitor per square cm of area. 
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5)       Suggestions for further experimental determinations:  

From the above studies, authors strongly recommend the following investigations: 

• Experimental determination of the value of ‘n’ as specified in Equation 1.2.5. 

• Experimental determination of the value of ‘k’ as specified in Equation 2.2.2. 

• Experimental determination of parameters ‘χ’ and ‘C’ as specified in this article. 

• Conducting of further experiments to find out the applications of the same for the 

preparation of PPE or gloves. 
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