Preprint / Version 1

COVID-19 Pandemic: The Origin, Transmission, Pathogenesis, and Therapeutic Application

Authors

  • Diana Moria Martin Lou Department of Pharmacology, School of Medicine, University of Juba
  • Joseph Badys Mayaka Department of Microbiology, School of Applied and Industrial Sciences, University of Juba

DOI:

https://doi.org/10.21467/preprints.161

Abstract

An outbreak of atypical pneumonia reported in late December 2019, which subsequently progressed to global health crises of significant magnitude within the first three months after its appearance and the etiology was traced to a seafood wholesale market in the city of Wuhan, China. Where a large number of infected patients are presumed to have been exposed to the wet animal market and this was the first confirmed incident recorded. The genome sequence of this unknown pathogen was obtained and then through carefully genome sequence comparison with the already previously characterized corona viruses; SARS-CoV and MERS-CoV, it was found that a betacoronavirus belonging to subfamily orthocoronavirinie is responsible for the pneumonia cases. This suggested that Wuhan was the site where COVID-19 first started and the disease is zoonotic in origin. COVID-19 pandemic has presented considerable challenges to public health care systems at global scale and dictates almost every aspect of medical practice and policies across the world. Apparently, an effective treatment therapy against COVID-19 is the most urgently needed to curb the rapidly increasing incidence of SARS-CoV-2 infections. Unfortunately up to this moment there is no approved drug for the treatment of COVID-19 patients, although many reports are suggesting the drugs which were previously used against SARS-CoV and MERS-CoV such as remdesviri, lopinavir, ritonavir, interferon beta-1b, and ribavirin but these are being tested in randomized trials and again mostly showing less clinical benefits. Use of a triple combination of interferon beta-1b, lopinavir-ritonavir and ribavirin drugs were reported to be effective than when each drug is used separately, however, collaborative investigations are needed to ascertain the fidelity of these drugs. In this review, we summarize the latest research progress of the origin, pathogenesis, clinical characteristics of COVID-19, and discussed the current treatment regimens for combating the COVID-19 pandemic.

Keywords:

SARS-CoV-2, COVID-19, Betacoronavirus, Therapeutics

Downloads

Download data is not yet available.

References

N. Zhu, D. Zhang, W. Wang, et al., “A novel coronavirus from patients with pneumonia in China” 2019. N Engl J Med 2020;382:727-33.

D. S. Hui, I. E. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T. D. Mchugh, Z. A. Memish, C. Drosten, et al., “The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China,” Int J Infect Dis. 91:264–266. 2020. https://doi.org/10.1016/j.ijid.2020.01.009

World Health Organization “WHO” “Novel Coronavirus (2019-nCoV) situation reports” 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

World Health Organization “WHO” “Novel coronavirus- China,” 2020. https://www.who.int/csr/don/05-january-pneumonia-of-unkown-cause-china/en/

Centers for Disease Control and Prevention “CDC” “Information for laboratories 2019 novel coronavirus, Wuhan, China,” 2020. (https://www.cdc.gov/coronavirus/2019-nCoV/guidance-laboratories.html).

D. Cucinotta, and M. Vanelli, “WHO declares COVID-19 a pandemic,” Acta Biomed; 91: 157-60. 2020.

A. Spinelli, and G. Pellino, “COVID-19 pandemic: perspectives on an unfolding crisis,” Br J Surg. March 19. 2020.

A. S. Fauci, H. C. Lane, R. R. Redfield, “Covid-19 - navigating the uncharted,” N Engl J Med ; 382: 1268-9. 2020.

E. Mahase and Z. Kmietowicz, “Covid-19: Doctors are told not to perform CPR on patients in cardiac arrest,” BMJ; 368:m1282. 2020.

World Health Organizationc “WHOc” “Novel coronavirus- China,” 2020. (https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/)

World Health Organizationd “WHOd” “Novel Coronavirus (2019-nCoV) situation reports” 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

World Health Organizatione “WHOe” “Coronavirus disease 2019 (COVID-19) situation report—85. World Health Organization,” 2020. https://www.who.int/docs/defaultsource/coronaviruse/situationreports/20200414-sitrep-85-covid-19.pdf?sfvrsn=7b8629bb_4

Y. Wang, J. Sun, A. Zhu, J. Zhao, J. Zhao, “Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models,” J. Thorac. Dis. 10, S2260–S2271. 2018.

J. Cui, F. Li, Z. L. Shi, “Origin and evolution of pathogenic coronaviruses,” Nat Rev Microbiol 17 (3):181–192. 2019. https://doi.org/10.1038/s41579-018-0118-9

S. R. Weiss, J. L. Leibowitz, (2011). “Coronavirus pathogenesis,” Adv Virus Res; 81: 85-164. 2011.

P. S. Masters, S. Perlman, “Coronaviridae,” In: Knipe DM, Howley PM, eds. Fields virology. 6th ed. Lippincott Williams & Wilkins, 825-58. 2013.

S. Su, G. Wong, W. Shi, et al., “Epidemiology, genetic recombination, and pathogenesis of coronaviruses,” Trends Microbiol; 24: 490–502. 2016.

A. R. Fehr, and S. Perlman, “Coronaviruses: an overview of their replication and pathogenesis,” Methods Mol Biol 1282:1–23. 2015. https://doi.org/10.1007/978-1-4939-2438-7_1

X. Y. Ge, W. H. Yang, J. H. Zhou, B. Li, W. Zhang, Z. L. Shi, Y. Z. Zhang, “Detection of alpha- and betacoronaviruses in rodents from Yunnan, China,” Virol J 14(1):98. 2017. https://doi.org/10.1186/s12985-017-0766-9

R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, et al., “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding,” Lancet 395(10224):565–574. 2020. https://doi.org/10.1016/S0140-6736(20)30251-8

A. M. Baig, A. Khaleeq, U. Ali, and H. Syeda, “Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host?Virus Interaction, and Proposed Neurotropic Mechanisms” ACS Chem. Neurosci. 11 (7), 995-998. 2020.

K. G. Andersen, A. Rambaut, W. I. Lipkin, et al., “The proximal origin of SARS-CoV-2” Nat Med. 26(4):450–452. 2020. https://doi.org/10.1038/s41591-020-0820-9

X. Li, J. Zai, Q. Zhao, Q. Nie, Y. Li, B. T. Foley, A. Chaillon, “Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2,” J Med Virol 2020:1–10. https://doi.org/10.1002/jmv.25731

M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, R. Siddique, “COVID-19 infection: origin, transmission, and characteristics of human coronaviruses,” J Adv Res 24:91–98. 2020. https://doi.org/10.1016/j.jare.2020.03.005

P. J. Halfmann, et al, “Transmission of SARS-CoV-2 in domestic cats”. 2020. https://doi.org/10.1056/NJEMc2013400

G. Das, N. Mukherjee, and S. Ghosh, “Neurological Insights of COVID-19 Pandemic,” 2020. https://pubs.acs.org/10.1021/acschemneuro.0c00201

S. Kumar, R. Nyodu, V. K. Maurya, and S. K. Saxena, “Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),” 2020.

C. Drosten, S. G€unther, W. Preiser, S. van der Werf, H-R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, et al., “Identification of a novel coronavirus in patients with severe acute respiratory syndrome,” N Engl J Med. 348(20):1967–1976. 2003. https://doi.org/10.1056/NEJMoa030747

T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, et al., “A novel coronavirus associated with severe acute respiratory syndrome,” N Engl J Med. 348(20):1953–1966. 2003. https://doi.org/10.1056/NEJMoa030781

J. S. M. Peiris, S. T. Lai, L. L. M. Poon, Y. Guan, L.Y. C. Yam, W. Lim, J. Nicholls, et al., “Coronavirus as a possible cause of severe acute respiratory syndrome,” The Lancet. 361(9366):1319–1325. 2003. https://doi.org/10.1016/S0140-6736(03)13077-2

N. L. Ithete, S. Stoffberg, V. M. Corman, V. M. Cottontail, L. R. Richards, M. C. Schoeman, C. Drosten, J. F. Drexler, and W. Preiser, “Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa,” Emerg Infect Dis. 19(10):1697–1699. 2013. https://doi.org/10.3201/eid1910.130946

A. N. Alagaili, T. Briese, N. Mishra, V. Kapoor, S.C. Sameroff, P. D. Burbelo, E. de Wit, V. J. Munster, L. E. Hensley, I. S. Zalmout, et al., “Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia” MBio. 5(2): e00884–00814. 2014. https://doi.org/10.1128/mBio.00884-14

A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, R. A. Fouchier, “Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia” N. Engl. J. Med.:367, 1814–1820. 2012.

B. Hu, L. P. Zeng, X. L.Yang, et al., “Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus,” PLoS Pathog. 13. 2017.

N. Dong, X. M. Yang, L. W. Ye, et al., “Genomic and protein structure modelling analysis depicts the origin andinfectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China,” bioRxiv, 2020. https://doi.org/10.1101/2020.01.20.913368

J. F-W. Chan, Kin-Hang Kok, Zheng Zhuc, Hin Chua, Kelvin Kai-Wang Toa, Shuofeng Yuana, and Kwok-Yung Yuenb., “Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan,” Emerging Microbes & Infections; 9(1): 540. 2020. https://doi.org/10.1080/22221751.2020.1719902

F. Wu, S. Zhao, B. Yu, et al., “Complete genome characterization of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv 2020. https://doi.org/10.1101/2020.01.24.919183

D. Paraskevis, E. G. Kostaki, G. Magiorkinis, et al., “Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event,” bioRxiv 2020. https://doi.org/10.1101/2020.01.26.920249

P. Zhou, “A pneumonia outbreak associated with a new coronavirus of probably bat origin” Nature; 579 (7798); 270-273, 2020.

K. P. Xiao, J. Q. Zhai, Y. Y. Feng, et al., “Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins” bioRxiv 2020. https://doi.org/10.1101/2020.02.17.951335

T. Lam, Tsan-Yuk, M. Shum, Ho-Hin, H. C. Zhu, et al., “Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China,” bioRxiv, 2020. https://doi.org/10.1101/2020.02.13.945485

J. M. Huang, S. S. Jan, X. Wei., et al., “Evidence of the Recombinant Origin and Ongoing Mutations in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, Preprint, 2020. https://doi.org/10.1101/2020.03.16.993816

E. Simon-Loriere and E. C. Holmes, (2011). Nat. Rev Micro-bio;9:617-26. 2011.

W. G. Carlos, C. S. Dela, et al, “Novel Wuhan (2019-nCoV) coronavirus,” Am. J. Respir. Crit. Care Med. 201(4):7–8. 2020.

M. M. Aron, K. M. Hatfield, S. C. Reddy, A. Kimball, A. James, J. R. Jacobs, J. Taylor, K. Spicer, A. C. Bardossy, L. P. Oakley, S. Tanwar, et al., “Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility”. N Engl J Med. 2020. https://doi.org/1056/NEJMoa2012410

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” Lancet. 395(10223):497–506. 2020.

L. T. Phan, T. V. Nguyen, Q. C. Luong, et al., “Importation and human-to-human transmission of a novel coronavirus in Vietnam,” N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2001272

S, Xia, L. Yan, W. Xu, et al., “A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike” Sci Adv. Apr 10; 5(4):4580. 2019.

Y. H. Jin, L. Cai, Z. S. Cheng, H. Cheng, T. Deng, Y. P. Fan, et al., “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019nCoV) infected pneumonia (standard version),” Mil Med Res.7 (1):4. 1-23. 2020.

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, et al., “Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China,” JAMA. 323(11):1061-1069. 2020. https://doi.org/10.1001/jama.1585

T. Guo, Y. Fan, M. Chen, et al., “Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19),” JAMA Cardiol 2020 March 27. 2020.

H. D. Song, C. C. Tu, G. W. Zhang, et al., “Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human,” Proc Natl Acad Sci U S A. Feb 15; 102(7):2430–2435. 2005.

D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, et al., “Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,” Science 367 (6483):1260–1263.2020. https://doi.org/10.1126/science.abb2507

B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N. G. Seidah, E. Decroly “The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade,” Antivir Res 176:104742. 2020. https://doi.org/10.1016/j.antiviral.2020.104742

A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein,” Cell 180:1–12. 2020. https://doi.org/10.1016/j.cell.2020.02.058

H. Lu “Drug treatment options for the 2019-new coronavirus (2019nCoV),” Biosci. Trends, 14(1):69-71. 2020. https://doi.org/10.5582/bst.2020.01020.

K. Yuki, M. Fujiogi, S. Koutsogiannaki, “COVID-19 pathophysiology: A review, clinical immunology” 215:108427.2020.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., “SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor,” Cell. 181(2): 271.e8-280.e8. 2020.

L. Nicin, W. T. Abplanalp, H. Mellentin, et al., “Cell type-specific expression of the putative SARS CoV-2 receptor ACE2 in human hearts,” Eur Heart J . April 15. 2020.

G. I. Rice, D. A. Thomas, P. J. Grant, A. J.Turner, N. M. Hooper, “ Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism,” Biochem J . 383: 45-51. 2004.

I. Hamming, W. Timens, M. L. Bulthuis, A. T. Lely, G. Navis, H. van Goor, “Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis,” J Pathol. 203(2):631–7. 2004.

L. Fang, G. Karakiulakis, M. Roth, “Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?” Lancet Respir. Med. Mar 11. 8(4)e21. PMID: 32171. 2020.

M. Hickey, L. Pewe, J. Netland, et al., “ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia,” J Virol. 79(23): 14614–21. 2005.

N. Zhang, S. Jiang, L. Du, “Current advancements and potential strategies in the development of MERS-CoV vaccines” Expert Rev Vaccines. 2014;13(6):761–74.

S. Xia, Y. Zhu, M. Liu, Q. Lan, W. Xu, Y. Wu, et al., “Fusion mechanism of 2019nCoV and fusion inhibitors targeting HR1 domain in spike protein” Cell Mol Immunol.2020. https://doi.org/10.1038/s41423-020-0374-2

F. Yu, L. Du, D. M. Ojcius, C. Pan, S. Jiang, “Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China” Microbes Infect. 2020. https://doi.org/10.1016/j.micinf.01.003

A. H. de Wilde, E. J. Snijder, M. Kikkert, and M. J. van Hemert, “Host factors in coronavirus replication,” Curr Top Microbiol Immunol. 419:1–42. 2018.

S. G. Sawicki, and D. L. Sawicki, “Coronavirus transcription: a perspective,” Curr Top Microbiol Immunol. 287:31–55. 2005.

S. Hussain, J. Pan, Y. Chen, Y. Yang, J. Xu, Y. Peng, et al., “Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus,” J Virol. 79(9):5288–95. 2005.

A. Perrier, A. Bonnin, L. Desmarets, A. Danneels, A. Goffard, Y. Rouille, et al., “The C-terminal domain of the MERS coronavirus M protein contains a trans Golgi network localization signal,” J Biol Chem. 294(39):14406–21. 2019.

M. Letko, A. Marzi, V. Munster, “Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses,” Nat Microbiol.5. 562-569. 2020. https://doi.org/10.1038/s41564-020-0688-y

W. Song, M. Gui, X. Wang, Y. Xiang, (2018). “Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2,” PLoS Pathog. 14(8):e1007236. 2018.

T. Smith, and J. Bushek, “COVID-19 Drug Therapy – Potential Options,” Updated March 26, Elsevier © 2020.

S. Milne, C. X. Yang, W. Timens, Y. Bossé, D. D. Sin, “SARS-CoV-2 receptor ACE2 gene expression and RAAS inhibitors,” 2020. https://doi.org/10.1016/S2213-2600(20)30224-1

X. Wu, R. C. Nethery, B. M. Sabath, D. Braun, F. Dominici., “Exposure to air pollution and COVID-19 mortality in the United States. medRxiv. Published online April 27. 2020. https://doi.org/10.1101/2020.04.05.20054502

H. Cai, “Sex difference and smoking predisposition in patients with COVID-19,” Lancet Respir Med. 8: e20. 2020.

M. R. Mehra, S. S. Desai, S. Kuy, et al., “Cardiovascular disease, drug therapy and mortality in COVID-19,” N Engl J Med. 2020. https://doi.org/10.1056/NJEMoa2007621

K. Wang, et al., “SARS-CoV-2 invades host cells via a novel route: CD147-spike protein,” 2020. https://doi.org/10.1101/2020.03.14988346

Y. C. Li, W. Z. Bai, and T. Hashikawa, “The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients,” J. Med. Virol., 1?4. 2020.

K. Toljan, “Letter to the Editor Regarding the Viewpoint “Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host?Virus Interaction, and Proposed Neurotropic Mechanism,” ACS Chem. Neurosci. 11, 1192. 2020.

N. Poyiadji, G. Shahin, D. Noujaim, M. Stone, S. Patel, and B. Griffith, “COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features,” Radiology, 201187. 2020.

M. Ackermann, S. E. Verleden, M. Kuehnel, A. Haverich, T. Welte, F. Laenger, A. Vanstapel, C. Werlein, H. Stark, A. Tzankov, et al., “Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19” 2020. https://doi.org/10.1056/NEJMoa2015432

R. Sardar, D. Satish, S. Birla, and D. Gupta, “Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis,” bioRxiv, 2020. https://doi.org/10.1101/2020.03.21.001586

FDA Website: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-ordevice-exemption-ide-process-cber/investigational-covid-19-convalescent-plasmaemergency-inds?utm_campaign=What%27sNew2020-0324&utm_medium=email&utm_source=Eloqua

Kramer M, Pigott D, Xu B, Hill S, et al “Epidemiological Data from the nCoV-2019 Outbreak: Early Description from Publicly Available Data; http://virological/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-publicly-available-data/337

ESICM, SCCM. Surviving sepsis campaign rapid guidelines of the management of critically ill adults with corona virus disease 2019 (pre-publication). Available on the World Wide Web at: https://www.esicm.org/ssc-covid19-guidelines/

A. Nitsche, B. Schweiger, H. Ellerbrok, et al., “SARS-Coronavirus detection,” Emerg Infect Dis. July (10)71300-1303. 2004. https://doi.org/10.3201/eid1007.030678.

L. Di Trani, I. Donatelli, R. Cauda, and A. Cassone, “New insights into the antiviral effects of chloroquine,” Lancet Infect. Dis. 6, 67–69. 2006.

Y. Yan, Z. Zhen, S. Yang, et al.. “Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model” Cell Res. 23, 300–302. 2013.

M. J. Vincent, Eric Bergeron, T. Stuart, Nichol., et al., “Chloroquine is potent inhibitor of SARS coronavirus infection and spread,” Virol. J.,2 69)1-10. 2005.

L. Zou, F. Ruan, M. Huang, et al., “SARSCoV- 2 viral load in upper respiratory specimens of infected patients”. N Engl J Med, 382: 1177-9. 2020.

KK-W. To, OT-Y. Tsang, W-S. Leung, et al., “Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study,” Lancet Infect Dis. March 23. 2020.

B. F. Young, S. W. X. Ong, S. Kalimuddin, et al., “Epidemiologic features and clinical course of patients infected with SARSCoV- 2 in Singapore” JAMA March 03 2020.

World Health Organizationf “WHOf” “Immunization, Vaccines and Biological: WHO Recommendations for Routine Immunization – Summary Tables” 2019. Available online at: https://www.who.int/immunization/policy/immunization_tables/en/

P. D. Kwong and I. A. Wilson, “HIV-1 and Influenza antibodies seeing antigens in a new ways,” Nat. Acad Immunol, 10,573-578. 2009.

D. R. Burton, L. Hangartner, “Broadly neutralizing antibodies to HIV and their roles in vaccine design,” Annu Rev Immunol; 20;30635-59. 2016.

S. B. Halstead, “Which dengue vaccine approach is the most promosing and should we concerned about enhanced disease after vaccination? There is only one true winner,” cold spring Harb perspect Biol. 1,10(6);a030700. 2018.

M. A. Tortorici, and D. Veesler, “Structural insights into coronavirus entry,” Adv Virus Res. 105:93–116. 30. 2019.

Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li, “Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS,” J Virol. 10, 1128/JV1. 00127-20. 2020. https://doi.org/10.1128/JVI.00127-20

N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al., “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,” Lancet. 395(10223):507–13. 2020.

N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, G. M. Joynt, et al., “A major outbreak of severe acute respiratory syndrome in Hong Kong,” N Engl J Med. 348(20):1986–94. 2003.

A. Assiri, J. A. Al-Tawfiq, A. A. Al-Rabeeah, F. A. Al-Rabiah, S. Al-Hajjar, A. Al-Barrak, et al., “Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study”. Lancet Infect Dis. 13(9):752–61. 2013.

H. Wang, X. Xiao, J. Lu, Z. Chen, K. Li, H. Liu, et al., “Factors associated with clinical outcome in 25 patients with avian influenza a (H7N9) infection in Guangzhou, China,” BMC Infect Dis. 16(1):534. 2016.

T. P. Sheahan, C. S. Amy C., Rachell et al., “Broad spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronavirus,” Sci. Transl. Med. 9(396) eaal3653. 2017.

S. Mulangu, et al., “A randomized control trial of Ebola virus disease therapeutics,” N. Engl. J. Med. 381, 2293–2303. 2019.

T. K. Warren, et al., “Therapeutic efficacy of small molecules GS-5734 against Ebola virus in rhesus monkey,” Nature 531, 381–385. 2016.

P. Gautret, J. C. Lagier, P. Parola, et al., “Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents,” March 20 (Epub ahead of print). 2020.

J. Chen, D. Liu, L. Liu, et al., “A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19),” J Zhejiang Univ (Med Sci), 2020.

J. Geleris, Y. Sun, J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labella, D. K. Manson, C. Kubin, et al., “Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19,” 2020. https://doi.org/1056/NEJMoa2012410

A. J. Brown, J. J. Won, R. L. Graham, et al., “Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase,” Antiviral Res. 169: 104541. 2019.

T. P. Sheahan, A. C. Sims, S. R. Leist, et al., “Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERSCoV,” Nat Commun. 11: 222. 2020.

M. L. Agostini, E. L. Andres, A. C. Sims, et al., “Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease” mBio 9(2): e00221-18. 2018.

M. Wang, R. Cao, L. Zhang, et al., “Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro,” Cell Res 30: 269-71. 2020.

J. Grein, N. Ohmagari, D. Shine, G. Diaz, E. Asperges, et al., “Compassionate use of remdesivir for patients with severe COVID-19,”N Engl J Med. April 10 2020. https://doi.org/10.1056/NJEMoa2007016

E. de Wit, A. L. Rasmussen, D. Falzarano, et al., “Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques,” Proc Natl Acad Sci U S A. 110: 16598-603. 2013.

E. de Wit, F. Feldmann, J. Cronin, et al., “Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection,” Proc Natl Acad Sci U S A; 117: 6771-6. 2020.

T. T. Yao, J. D. Qian, W. Y. Zhu, et al., “A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option” J Med Virol Feb 27.2020.

S. M. Poutanen, D. E. Low, B. Henry, S. Finkelstein, D. Rose, K. Green, et al., “Identification of severe acute respiratory syndrome in Canada,” N Engl J Med. 348(20):1995–2005. 2003.

J. H. Beigel, K. M. Tomashek, L. F. Dodd, A. K. Metha, B. S. Zingman, A. C. Kalil, E. Hohmann, H. Y. Chu, et al., “Remdesivir for the Treatment of Covid-19- Preliminary Report,” Lancet 2020. https://doi.org/10:1056/NEJMoa2007764

Y. Wang, L. Wang, D. Ye, “Review of the 2019 Novel coronavirus (SARS-CoV-2) based on current evidence,” Int J Antimicrob Agents 19; 105948. 2020.

C. M. Chu, V. C. Cheng, I. F. Hung, et al., “Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings,” Thorax; 59: 252-6. 2004.

F. Chen, K. H. Chan, Y. Jiang, et al., “In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds,” J Clin Virol; 31: 69-75. 2004.

C-Y. Wu, J-T. Jan, S-H. Ma, et al., “Small molecules targeting severe acute respiratory syndrome human coronavirus” Proc Natl Acad Sci U S A;101: 10012-7. 2004.

A. H. de Wilde, D. Jochmans, C. C. Posthuma, et al., “Screening of an FDA-approved compound library identifies four small molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture,” Antimicrob Agents Chemother; 58: 4875-84. 2014.

JF-W. Chan, Y. Yao, M-L. Yeung, et al., “Treatment with lopinavir/ritonavir or interferon-?1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset,” J Infect Dis; 212: 1904-13. 2015.

B. Cao, Y. Wang, D. Wen, W. Liu, J. Wang, G. Fan, et al., A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N.Engl J Med.382;1787-1799. 2020. https://doi.org/10.1056/NEJMoa2001282

X. Xu, M. Han, T. LI, et al.. “Effect treatment of severe COVID-19 patients with tocilizu’mab” ChinaXiv.0300026.v1. 2020.

B. Nutho, P. Mahalapbutr, K. Hengphasatporn, et al., “Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms,” Lancet. 2020. https://dx.doi.org/10.1021/acs.biochem.0c00160

V. Nukoolkarn, V. S. Lee, M. Malaisree, O. Aruksakulwong, and S. Hannongbua, “Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors,” J. Theor. Biol. 254 (4), 861?867. 2008.

I. F. Hung, K. C. Lung, E. Y. Tso, R. Liu, T. W. Chung, M. Chu, Y. Ng, J. Lo, J. Chan, et al., “Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial,” 2020. https://doi.org/10.1016/S0140-6736(20)31042-4

G. W. Amsden, “Anti-inflammatory effects of macrolides - an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?” J Antimicrob Chemother 55:10-21. PMID: 15590715. 2005.

A. Beigelman, C. L. Mikols, S. P. Gunsten, et al., “Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis,” Respir Res 11:90. PMID: 20591166. 2010.

Z. Wang, X. Chen, Y. Lu, F. Chen, W. Zhang, “Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment,” Biosci Trends. JAMA, 323(11)1061-1069. 2020. https://doi.org/10.5582/bst.2020.01030

S. Geoghegan, K. P. O’Callaghan, and P. A. Offit, “Vaccine Safety: Myths and Misinformation,” Front. Microbiol. 11:372. 2020. https://doi.org/10.3389/fmicb.2020.0037

B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, B. Foley, E. E. Giorgi, et al., “Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2,” N Engl J Med. 2020. https://doi.org/10.1101/2020.04.29.069054

S. Perlman, “Another decade, another coronavirus,” N Engl J Med. 382:760-2. 2020.

Q. Li, X. Guan, P. Wu, X. Wang, et al., “Early transmission dynamics in Wuhan, China of novel coronavirus-infected Pneumonia,” N Engl J Med. 382:1199-1207. 2020. https://doi.org/101056/NEJMoa2001316

Z-D. Tong, A. Tang, K-F. Li, et al., “Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China,” Emerg Infect Dis 26: 1052-4. 2020.

G. Qian, N. Yang, A. H. Y. Ma, et al., “A COVID-19 transmission within a family cluster by presymptomatic infectors in China,” Clin Infect Dis. March 23, 2020.

W. E. Wei, Z. Li, C. J. Chiew, S. E. Yong, M. P. Toh, V. J. Lee, “Presymptomatic transmission of SARS-CoV-2 - Singapore,” January 23– March 16, MMWR Morb Mortal Wkly Rep. 69: 411-5. 2020.

J. F. Chan, K. H. Kok, Z. Zhu, et al., “Genomic characterization of the 2019 novel –human pathogenic coronavirus isolated from a patient with a atypical pneumonia after visiting Wuhan,” Emerg microbes Infect, 9(1):221.-236. 020. 2020. https://doi.org/10.1080/22221751.2020.1719902

Downloads

Posted

2020-07-03

Section

Coronavirus

Categories