Preprint / Version 1

Therapeutic Potential of Olive’s Bioactive Compounds in COVID-19 Disease Management

A Review


  • Chandrashekharaiah P.S Reliance Industries Ltd., Jamnagar Gujarat
  • Santosh Kodgire Reliance Industries Ltd., Jamnagar Gujarat
  • Vishal Paul Reliance Industries Ltd., Jamnagar Gujarat
  • Dishant Desai Reliance Industries Ltd., Jamnagar Gujarat
  • Shivbachan Kushwaha Reliance Industries Ltd., Jamnagar Gujarat
  • Debanjan Sanyal Reliance Industries Ltd., Jamnagar Gujarat
  • Santanu Dasgupta Reliance Industries Ltd., Navi, Mumbai


In this present time the world is continuously discovering effective treatment strategies for controlling the Coronavirus disease - 2019 (COVID-19). Many researchers have focused on designing drugs which can affect replication or protease activity of coronavirus. The clinical testing and regulatory approvals for these drugs will take time. However, currently there is an urgent requirement of treatment strategies which are safe, effective and can be implemented through readily available products in market. Many plant derived products rich in secondary metabolites having potential health benefits and antimicrobial properties. The olive plant leaf extracts and olive oil are rich sources of secondary metabolites such as phenols (oleuropein and hydroxytyrosol) and terpenoids (oleanolic, maslinic and ursolic acid). These compounds have been used as an effective antiviral agents in the past. The phenolics affect the virus attachment and replication. Whereas, the terpenoids mainly affects the membrane fluidity of the virus. In the recent molecular docking studies, it was found that, these compounds effectively bound to Mpro and 3CLpro protease sites of SARS-CoV-2 and were predicted to affect the replication of the SARS-CoV-2. Apart from antiviral properties, these bioactive compounds possess various other pharmacological properties such as anti-inflammatory, anti-modulatory, anti-thrombotic and anti-oxidative. The olive oil is consumed as a source of dietary fat and is the secret behind the good health in Mediterranean people. The consumption of olive oil is safe and is believed to increase the immunity against various infectious microbes. Hence olive products can be explored in management of COVID-19. In this review the various properties of phenolic and terpenoid compounds found in olives were discussed in the context of COVID-19.


COVID-19, Olive oil, Plant secondary metabolites


Download data is not yet available.


Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.: Meng J.; Zhu, Z.; Zhang Z.; Wang, J.; Sheng, J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe 2020, 27(3), 325–328.

Chu, D.K.; Pan, Y.; Cheng, S.; Hui, K.P. ; Krishnan, P.; Liu, Y.; Ng, D.Y.; Wan, C.K.; Yang, P.; Wang, Q. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry 2020, 66(4), 549–555.

Lu, G.; Wang, Q.; Gao, G.F.; Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology 2015, 23(8),468–478.

Das, U.N.; Can Bioactive Lipids Inactivate Coronavirus (COVID-19)? Arch. Med. Res. 2020, 51(3), 282–286.

National Health Commission of China, 2020,

Ganjhu, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S.; Arunkumar, G. Herbal plants and plant preparations as remedial approach for viral diseases. Virus Disease 2015, 26, 225-236.

Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safet. Front Pharmacol 2014, 4:177.

Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014, 4, 24-35.

Wang, K.C.; Chang, J,S.; Lin, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effect of cimicifugin from Cimicifuga foetida against human respiratory syncytial virus. Am J Chin Med 2012, 40,1033-45.

Gibson, A.; Edgar, J.D.; Neville, C.E.; Gilchrist, S.E.C.M.; McKinley, M.C.; Patterson, C.C.; Young, I.S.; Woodside, J.V. Effect of fruit and vegetable consumption on immune function in older people: A randomized controlled trial. Am. J. Clin. Nutr 2012, 96, 1429–1436.

Naik, S.R.; Thakare, V.N.; Joshi, F.P. Functional foods and herbs as potential immunoadjuvants and medicines in maintaining healthy immune system: A commentary. J. Complement. Integr. Med 2010, 7, 1.

Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem 2002, 13, 636–644.

Obied, H. K.; Allen, M.S.; Bedgood, D.R.; Prenzler. P.D.; Robards, K.; Stockmann, R. Bioactivity and analysis of biophenols recovered from olive mill waste. Journal of Agricultural and Food Chemistry 2005, 53(4), 823–837.

Caramia, G.; Gori, A.; Valli, E.; Cerretani, L. Virgin olive oil in preventive medicine: From legend to epigenetics. Eur. J. Lipid Sci. Technol 2012, 114, 375–388.

Covas, M.I.; Fitó, M.; de la Torre, R. Minor Bioactive Olive Oil Components and Health: Key Data for Their Role in Providing Health Benefits in Humans. In Olive and Olive Oil Bioactive Constituents; Elsevier, Inc.: Philadelphia, PA, USA, 2015, 31.

Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N. Engl. J. Med 2003, 348, 1953–1966.

Glowacka, I.; Bertram, S.; Muller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; et al. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. 2011, 85, 4122–4134.

Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pohlmann, S. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. J. Virol 2014, 88, 1293–1307.

Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J. Virol 2011, 85, 873–882.

Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med 2005, 11, 875–879.

Huang, C .; Wang, Y.; X, Li.; Ren, L.; Zhao, J.; Y. Hu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223), 2020, 497–506.

Wang, L.; Wang, Y.; Ye, D.; Liu, Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int. J. Antimicrob. Agents 2020, 105948.

Schnell, L.; Fearn, S.; Klassen, H.; Schwab, M.E.; Perry, V.H. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 1999, 11, 3648–3658.

Matsuyama, Y.; Sato, K.; Kamiya, M.; Yano, J.; Ivata, H.; Isobe, K. Nitric oxide:a possible etiologic factor in spinal cord cavitation. J Spinal Disord 1998, 11, 248-52.

Jazayeri-Shooshtari, S.M.; Namdar, Z.; Owji, S.M.; Mehrabani, D.; Mohammadi-Samani, S.; Tanideh, N.; Alizadeh, A.A.; Namazi, H.; Amanollahi, A.; Rajaee, Z.; Bidaki, L. Healing effect of lamotrigine on repair of damaged sciatic nerve in rabbit. J Appl Anim Res 2009, 36, 243-249.

Chen, N.; Zhou, M.; Dong, X.; Qu, J; Gong, F.; Han, Y.; Yang, Q.; Jingli, W .; Ying, L.; Yuan, W.; Jia'an, X.; Ting, Y.; Xinxin, Z .; Li, Z . Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020, 395, (10223), 507–513.

Opal, S.M. Interactions between coagulation and inflammation. Scand J Infect Dis. 2003, 35, 545–554.

Xu, X.T.; Chen, P.; Wang, J.F.; Feng, J.N.; Zhou, H.; Li, X.; et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China-Life Sci 2020, 63 (3), 457–460.

Li, H.; Liu, L.; Zhang, D.Y.; Xu, J.Y.; Dai, H.P.; Tang, N. SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet 2020, 395, 1517-20.

Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J 2005, 2, 69.

Kono, M.; Tatsumi, K.; Imai, A.M.; Saito, K.; Kuriyama, T.; Shirasawa, H. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res 2008, 77, 150-152.

Yan, Y.; Zou, Z.; Sun, Y.; Li. X.; Xu. K.F.; Wei. Y.; et al. Antimalaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 2013, 23, 300-302.

Zhang, W.; Zhao, Y.; Zhang, F.; et al. The use of anti-inflammatory drugs in the treatment of people with severe corona virus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunol 2020, 108393.

Teissier, E.; Zandomeneghi, G.; Loquet, A.; Lavillette, D.; Lavergne, J.P.; Montserret, R.; Cosset, F.L.; et al. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS ONE 2011, 6, e15874.

News: Abidol and darunavir can effectively inhibit coronavirus. 2020, com/2/2020/0205/70145.html.

Hull, M.W.; Montaner, J.S. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med 2011, 43, 375-388.

Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J. Virol 2016, 90, 8924-8933.

Hongzhou, L. Efficacy and safety of Darunavir and Cobicistat for Treatment of Pneumonia Caused by 2019-nCoV. 2020.

The world health organization international clinical trials registered organization registered platform. Chinese Clinical Trial Register (Chi CTR). 2020.

Hossain, M.A.; Tran, T.; Chen, T.; Mikus, G.; Greenblatt. D.J. Inhibition of Human Cytochromes P450 in Vitro by Ritonavir and Cobicistat. J. Pharm Pharmacol 2017, 69(12), 1786-1793.

Sandro, G.; Rosa V.; Santos. W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam Salud Publica 2020, 44, e40.

Wagstaff, K.M.; Sivakumaran, H.; Heaton, S.M.; Harrich, D.; Jans D.A. Ivermectin is a specific inhibitor of importin alpha/betamediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J 2012, 443(3), 851-856.

Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res 2020. 178, 104787.

Yamawaki, H.; Futagami, S.; Kaneko, K.; Agawa, S.; Higuchi, K.; Murakami, M.; Wakabayashi, M.; et al. Camostat Mesilate, Pancrelipase, and Rabeprazole Combination Therapy Improves Epigastric Pain in Early Chronic Pancreatitis and Functional Dyspepsia with Pancreatic Enzyme Abnormalities. Digestion 2019, 99, 283-292.

Hoffmann, M.; Kleine-Weber, H.; Kruger, N.; Muller, M.; Drosten, C.; Pohlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020, 01.31.929042.

Choy, M. Pharmaceutical approval update. A Peer-reviewed Journal for Formulary Management. 2016, 41, 416-441.

Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio 2018, 9, e00221-18.

Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020, 30, 269-271.

Al-Tawfiq, J.A.; Momattin, H.; Dib, J.; Memish, Z.A. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis 2014, 20, 42-46.

Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses-drug discovery and therapeutic options. Nat. Rev. Drug Discov 2016, 15, 327-347.

De Clercq, E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J 2019, 14, 3962-3968.

Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473-475.

Lamontagne, F.; Rochwerg, B.; Lytvyn, L.; Guyatt, G.H.; Moller, M.H.; Annane, D.; et al. Corticosteroid therapy for sepsis: a clinical practice guideline. BMJ 2018, 362, k3284.

Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review. JAMA 2020, 323(18).

Clinical trials Arena. Incyte begins Phase III trial of ruxolitinib to treat Covid-19. 2020.

Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020,

Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA. 2020, 202004168.

Andre, F. E. The future of vaccines, immunisation concepts and practice. Vaccine. 2001, 19, 2206-2209.

Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA vaccines for infectious diseases. Front Immunol 2019, 10, 594.

Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270-273.

Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol 2018, 16, e3000003.

Williamson, E. M.; Liu, X.; Izzo, A. A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. British Journal of Pharmacology 2020, 177(6), 1227–1240.

Moghadamtousi, S. Z. M.; Nikzad, S.; Kadir, H. A.; Abubakar, S.; Zandi, K. Potential antiviral agents from marine fungi: An overview. Marine Drugs 2015, 13(7), 4520–4538.

Oliveira, A. F. C. S.; Teixeira, R. R.; de Oliveira; A. S., de Souza; A. P. M., da Silva; M. L.; de Paula, S. O. Potential antivirals: Natural products targeting replication enzymes of dengue and Chikungunya viruses. Molecules 2017, 22(3), 505.

Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; and Ali, M. Identification of potent covid-19 main protease (mpro) inhibitors from natural polyphenols: an in-silico strategy unveils a hope against CORONA. Preprints 2020, PPR2020030333, DOI: 10.20944/preprints202003.0333.v1 PPR: PPR118619.

Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2020, 13, 1-11.

Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A. L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med 2013, 79(16), 1576-1587.

Saija, A.; Uccella, N., Olive biophenols: functional effects on human wellbeing. Trends in Food Science & Technology 2000, 11, (9–10), 357-363.

Kalua, C. M.; Allen, M. S.; Bedgood Jr., D. R.; Bishop, A. G.; Prenzler, P. D.; “Olive oil volatile compounds, flavour development and quality: a critical review. Food Chemistry 2007, 100, (1), 273–286.

Erbay, Z.; Icier, F. The importance and potential uses of olive leaves. Food Reviews International 2010, 26 (4), 319–334.

Bach-Faig, A.; Fuentes-Bol, C.; Ramos, D.; Carrasco, J.; Roman, B.; Bertomeu, I.; Serra-Majem, L. The Mediterranean diet in Spain: Adherence trends during the past two decades using the Mediterranean Adequacy Index. Public Health Nutrition 2011, 14(4), 622-628.

Sahyoun, N.R.; Sankavaram, K. Historical origins of the Mediterranean Diet, Regional Dietary Profiles, and the Development of the Dietary Guidelines. In: Romagnolo, D., Selmin, O. (eds) Mediterranean Diet. Nutrition and Health. Humana Press, Cham. 2016, 43-56.

Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med 2014, 12, 219.

Nadia, C.; Egeria, S.; Mariangela P.; Maria A. C. Olive Oil, The Mediterranean Diet, Academic Press 2015, 13, 135-142, ISBN 9780124078499.

Sobiesiak, M. 2017. Chemical Structure of Phenols and Its Consequence for Sorption Processes. Phenolic Compounds - Natural Sources, Importance and Applications.

Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S.J. Chemistry and health of olive oil phenolics. Crit. Rev.Food Sci. Nutr 2009, 49, 218–236.

Montedoro, G.F.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. Their extraction, separation, quantitative and semiquantitative evaluation by HPLC. J. Agric. Food. Chem 1992a, 40, 1571–1576.

Montedoro, G.F.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. Initial characterization of the hydrolyzable fraction. J. Agric. Food. Chem 1992b, 40, 1577–1580.

Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem 1986, 34:823–826.

Le Tutour B.; Guedon D. Antioxidant activities of Olea europaea leaves and related phenolic compounds. Phytochemistry. 1992, 31, 1173–1178.

Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Fanizzi, F.P.; Maffia, M. Composition and statistical analysis of biophenols in Apulian Italian EVOOs. Foods 2017, 6, 90.

Fuentes, E.; Paucar, F.; Tapia, F.; Ortiz, J.; Jimenez, P.; Romero, N. Effect of the composition of extra virgin olive oils on the differentiation and antioxidant capacities of twelve mono varietals. Food Chem. 2018, 243, 285–294.

Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol 2000, 1, 107–112.

Blekas, G.; Vassilakis, C.; Harizanis, C.; Tsimidou, M.; Boskou, D.G. Biophenols in table olives. J. Agric. Food Chem 2002, 50, 3688–3692.

Breitmaier, E. Terpenes: Flavor, Fragrances, Pharmaca, Pheromones. Wiley VCH. 2006, 214, ISBN 3?527?31786?4.

Neige, C.; Mass ?e-Alarie, H.; Gagn, ?e M.; Bouyer, L.J.; Mercier, C. Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation. PLoS One 2017, 12, e0188801.

Quesada, C. S.; Alicia, L. B.; Fernando, W.; María, C.; Gabriel, B.; José, J. G. Bioactive Properties of the Main Triterpenes Found in Olives, Virgin Olive Oil, and Leaves of Olea europaea. J. Agric. Food Chem 2013, 61, 50, 12173–12182.

Caputo, R.; Mangoni, L.; Monaco, P.; et al. Triterpenes in Husks of Olea europaea. Phytochemistry 1974, 13, 1551-1552.

Ahmed-Belkacem A.; Ahnou, N.; Barbotte, L.; Wychowski, C.; Pallier, C.; Brillet, R.; Pohl, R.T.; Pawlotsky, J.M. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology 2010, 138, 1112–1122.

Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286.

Reichling, J. Plant—Microbe Interactions and Secondary Metabolites with Antibacterial, Antifungal and Antiviral Properties. In Functions and Biotechnology of Plant Secondary Metabolites; Annual Plant Reviews 39; Wink, M., Ed.; Wiley-Blackwell: Oxford, GB, USA, 2010, 214–347.

Fredrickson W.R.F.; S, Group, Inc. Method and Composition for Antiviral Therapy with Olive Leaves. U.S. Patent. 2000, 6, 117, 884.

Ma, S.C.; He, Z.D.; Deng, X.L.; But, P.P.; Ooi, V.E.; Xu, H.X.; Lee, S.H.; Lee, S.F. In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Chem Pharm Bull 2001, 49, 1471–1473.

Walker M. Olive leaf extract. The new oral treatment to counteract most types of pathological organisms. Explore: The Journal of Science and Healing 1996, 7,31.

Micol V.; Caturla, N.; Perenz-Fons, L.; Mas, L.; Perez, L.; Estepa, A. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antivir Res 2005, 66,129–136.

Lee-Huang, S.; Huang, P.L.; Zhang, D.; Lee, J.W.; Bao, J.; Sun, Y.; Chang, Y.T.; Zhang, J.; Huang, P.L. Discoveryof small-mollecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol. Biochem. Biophys. Res. Commun 2007, 354, 872–878.

Guiqin, Zhao.; Zhifeng, Yin.; Junxing, Dong. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J Ethnopharma 2009, 125, 265-268.

Kaspa, R.T.; Burk, R.D.; Shaul, Y.; Shafritz, D.A. Hepatitis B virus DNA containsa glucocorticoid-responsive element. P Natl Acad Sci USA 1986, 83, 1627-1631.

Kentaro, Y.; Haruko, Ogawa.; Ayako, Hara.; Yukio, Yoshida.; Yutaka, Yonezawa.; Kazuji, K.; Vuong Bui, N.; Hiroyuki Y.; Yu, Y.; Manabu. Y.; Kuniyasu, N.; Kunitoshi, I. Mechanism of the antiviral effect of hydroxytyrosol on influenza virus appears to involve morphological change of the virus. Antivi Res 2009, 83, 35-44.

Kong, L.; Liao, Q.; Zhang, Y.; Sun, R.; Zhu, X.; Zhang, Q.; Wang, J.; et al. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res. 2013, 98, 44-53.

Ma, C.; Nakamura, N.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Inhibitory effects of constituents from Cynomorium songaricum and related triterpene derivatives on HIV-1 protease. Chem. Pharm. Bull 1999, 47(2), 141-145.

Nakamura, N. Inhibitory effects of some traditional medicines on proliferation of HIV-1 and its protease. Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan 2004, 124(8), 519-529.

Filho, J.R.; Falcao, H.D.S.; Batista, L.M.; Filho, J.M.B.; Piuvezam, M.R. Effects of plant extracts on HIV-1 protease. Curr. HIV Res 2010, 8(7), 531-544.

Kashiwada, Y.; Wang, H.K.; Nagao T.; et al. Anti-AIDS agent’s anti-HIV activity of pomolic and structurally related triterpenoids. J. Nat. Product 1998, 61(9), 1090-1095.

Shyu, M.H.; Kao, T.C.; Yen, G.C. Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J. Agric. Food Chem 2010, 58, 6110-6118.

Hattori, M.; Ma, C.M.; Wei, Y.; Dine, S.R.E.; Sato, N. Survey of anti-HIV and anti-HCV compounds from Natural sources. Can. Chem. Trans. 2013, 1(2), 116-140.

Wu, H.Y.; Chang, C.I.; Lin B.W.; et al. Suppression of hepatitis B virus X protein-mediated tumorigenic effects by ursolic acid. J. Agric. Food Chem 2011, 59(5), 1713-1722.

Nishikomori, R.; Gurunathan, S.; Nishikomori, K.; Strober, W. BALB/c mice bearing a transgenic IL-12 receptor 2 gene exhibit a nonhealing phenotype to Leishmania major infection despite intact IL-12 signaling. The J. Immunol 2001, 166(11), 6776-6783.

Passero, L.F.D.; Bordon, M.L.A.D.C.; de Carvalho, A.K.; Martins, L.M.; Corbett, C.E.P.; Laurenti, M.D. Exacerbation of Leishmania (Viannia) shawi infection in BALB/c mice after immunization with soluble antigen from amastigote forms. APMIS. 2010, 118(12), 973-981.

Ferrero, M.L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E.; Andersen, N. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol 2007, 147(2), 227-35.

Abbas, A.B.; Lichtman, A.H. Innate Immunity. In Saunders (Elsevier). Basic Immunology. Functions and Disorders of the System (3rd ed.). 2010, ISBN 978-1-4160-4688-2.

Kotas, M.E.; Medzhitov, R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015, 160, 816–827.

Perez-Herrera, A.; Delgado-Lista, J.; Torres-Sanchez, L.; Rangel-Zuñiga, O.; Camargo, A.; Moreno-Navarrete, J.; Garcia-Olid, B.; Quintana-Navarro, G.; Alcala-Diaz, J.; Muñoz-Lopez, C. The postprandial inflammatory response after ingestion of heated oils in obese persons is reduced by the presence of phenol compounds. Mol. Nutr. Food Res 2012, 56, 510–514.

Moreno-Luna, R.; Muñoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.; Villar, J.; Stiefel, P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens 2012, 25, 1299–1304.

Bogani, P.; Galli, C.; Villa, M.; Visioli, F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 2007, 190, 181–186.

Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martínez, P.; Arranz, S.; Andres-Lacueva, C.; Llorach, R.; Medina-Remón, A.; Lamuela-Raventos, R.M. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacol. Res. 2012, 65, 577–583.

Muto E.; Dell'Agli, M.; Sangiovanni, E.; Mitro, N.; Fumagalli, M.; Crestani, M.; Fabiani, E.; Caruso, D. Olive oil phenolic extract regulates interleukin-8 expression by transcriptional and posttranscriptional mechanisms in Caco-2 cells. Mol. Nutr. Food Res 2015, 59, 1217–1221

Dell’ Agli, M.; Fagnani, R.; Galli, G.V.; Maschi, O.; Gilardi, F.; Bellosta, S.; Crestani, M.; Bosisio, E.; De Fabiani, E.; Caruso, D. Olive oil phenols modulate the expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-?B signaling. J. Agric. Food Chem 2010, 58, 2246–2252.

Impellizzeri, D.; Esposito, E.; Mazzon, E.; Paterniti, I.; Paola, Di. R.; Bramanti, P.; Morittu Maria, V.; Procopio, A.; Britti. D.; Cuzzocrea, S. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clin nutr 2011, 30,533-40.

Visioli, F.; Poli, A.; Galli, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 2002, 22, 65-75.

De la Puerta R.; Ruiz Gutierrez, V.; Hoult, J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol 1999, 57, 445–449.

Iacono, A.; Gómez, R.; Sperry, J.; Conde, J.; Bianco, G.; Meli, R.; Gómez-Reino, J.J.; Smith, A.B.; Gualillo, O. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis Rheum 2010, 62, 1675–1682.

Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.J.; Lago, F.; Smith, A.B.; Gualillo, O. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1? and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci 2012, 91, 1229–1235.

Gong, D.; Geng, C.; Jiang, L.; Cao, J.; Yoshimura, H.; Zhong, L. Effects of hydroxytyrosol-20 on carrageenan-induced acute inflammation and hyperalgesia in rats. Phytother. Res 2009, 23, 646–650.

Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.; Camacho-Corencia, P.; Sanchez-Rovira, P.; Vera-Ramirez, L.; Ramirez-Tortosa, M. Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Mol. Nutr. Food Res 2011, 55, S117–S126.

Silva, S.; Sepodes, B.; Rocha, J.; Direito, R.; Fernandes, A.; Brites, D.; Freitas, M.; Fernandes, E.; Bronze, M.R.; Figueira, M.E. Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis. J. Nutr. Biochem 2015, 26, 360–368.

Maria C.M.; Daniela, D.S.; Paola Di Meglio .; Carlo Irace . Maria Savarese. Raffaele Sacchi . Maria Pia Cinelli . Rosa Carnuccio Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn-Schmiedeberg’. Arch Pharmacol 2005, 371, 457–465.

Raphael, T.J.; Kuttan, G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomed 2003, 10 (6-7), 483-9.

Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016, 146, 201-13.

Seung-Hyung, K.; Jung-hee, H.; Young-Cheol, L. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2- mediated allergic asthma by modulating the transcription factors Tbet, GATA-3, RORt and Foxp3 in asthmatic mice. Int. Immunopharmacol 2012, 18(2), 311-24.

Dai, Y.; Hang, B.Q.; Li, P.Z.; Tan, L.W. Effects of oleanolic acid on immune system and type I allergic reaction. Zhongguo Yao Li Xue Bao 1989, 10(4), 381-84.

Eun-Ju, Y.; Wonhwa, L.; Sae-Kwang, K.; Kyung-Sik, S.; Jong-Sup, B. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food Chem. Toxicol 2012, 50(5), 1288-94.

Wonhwa, L.; Eun-Ju, Y.; Sae-Kwang, K.; Kyung-Sik, S.; Jong-Sup, B. Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflamm 2013, 36(1), 94-102.

Baricevic, D.; Sosa, S.; Della, R.L.; Tubaro, A.; Simonovska, B.; Krasna, B.; et al. Topical anti-inflammatory activity of Salvia officinalis L.leaves: The relevance of ursolic acid. J. Ethnopharmacol 2001, 75(2), 125-32.

Ahmad, S.F.; Khan, B.; Bani, S.; Suri, K.; Satti, N.K.; Qazi, G.N.; et al. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production. Pharmacol. Res 2006, 53, 233-40.

Nataraj, A.; Raghavendra, G.C.; Rajesh, R.; Vishwanath, B. Group IIA Secretory PLA2 inhibition by ursolic acid: A potent anti-inflammatory molecule. Curr. Top Med. Chem 2007, 7(8), 801-9.

Takada, K.; Nakane, T.; Masuda, K.; Ishii, H. Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF--induced E-selectin expression by cultured umbilical vein endothelial cells. Phytomed 2010, 17(14), 1114-9.

Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Zhang, Z.F.; Ye, Q.; et al. Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-B pathway activation. Cereb. Cortex 2010, 20(11), 2540-8.

Wang, Y.J.; Lu, J.; Wu, D.; Zheng, Z.; Zheng, Y.L.; Wang, X.; et al. Ursolic acid attenuates lipopolysaccharide-induced cognitive deficits in mouse brain through suppressing p38/NF-B mediated inflammatory pathways. Neurobiol Learn Mem 2011, 96(2), 156-65.

Shanmugam, M.K.; Ong, T.H.; Kumar, A.P.; Lun, C.K.; Ho, P.C.; Wong, P.T.H.; et al. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. PLoS One 2012, 7, 1-9.

Ma, J.Q.; Ding, J.; Xiao, Z.H.; Liu, C.M. Ursolic acid ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney by inhibiting the STAT3 and NF-B activities. Int. Immunopharmacol 2014, 21(2), 389-95.

Banno, N.; Akihisa, T.; Tokuda H.; et al. Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Biol. Pharm. Bull 2005, 28(10), 1995-1999.

Li, C.; Yang, Z.; Li. Z.; et al. Maslinic acid suppresses osteo clastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-????B and MAPK signaling pathways. J. Bone Miner. Res 2011, 26(3), 644-656.

Gilmore, T.D.; Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006, 25(51), 6680-6684.

Hsum, Y.W.; Yew, W.T.; Hong, P.L.V.; et al. Cancer chemo preventive activity of maslinic acid: suppression of COX-2 expression and inhibition of NF-????B and AP-1 activation in raji cells. Planta Medica 2011, 77(2), 152-157.

Marquez-Martin, A.; De La Puerta, R.; Fernandez-Arche, A.; Ruiz-Gutierrez, V.; Yaqoob, P. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine 2006, 36, 211-217.

Allouche, Y.; Warleta, F.; Campos, M.; Sanchez-Quesada, C.; Uceda, M.; Beltran, G.; Gaforio, J.J. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J. Agric. Food Chem 2011, 59, 121-130.

Fulkerson, P.C.; Rothenberg, M.E. Targeting eosinophils in allergy, in-flammation and beyond. Nat. Rev. Drug Discov 2013, 12, 117-129.

Duan, W.; Chan, J.H.; Wong, C.H.; Leung, B.P.; Wong, W.S. Anti-inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. J. Immunol 2004, 172, 7053-7059.

Sampson, A.P. IL-5 priming of eosinophil function in asthma. Clin. Exp. Allergy 2001, 31, 513-517.

Huang, W.C.; Chan, C.C.; Wu, S.J.; Chen, L.C.; Shen, J.J.; Kuo, M.L.; Chen, M.C.; Liou, C.J.; Matrine attenuates allergic airway inflammation and eosinophil infiltration by suppressing eotaxin and Th2 cytokine production in asthmatic mice. J. Ethnopharmacol 2014, 151, 470-477.

Martin, R.; Miana, M.; Jurado-Lopez, R.; Martinez-Martinez, E.; Gomez-Hurtado, N.; Delgado, C.; Bartolome, M.V.; San Roman, J.A. DIOL triterpenes block profibrotic effects of angiotensin II and protect from cardiac hypertrophy. PLoS One 2012, 7, e41545.

Seung-Hyung Kim, Jung-Hee Hong, Young-Cheol Lee. Ursolic acid, a potential PPAR? agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. European Journal of Pharmacology 2013, 701(1-3), 131-143.

Vasconcelos, J.F.; Teixeira, M.M.; Barbosa-Filho, J.M.; Lucio, A.S.; Almeida, J.R.; de Queiroz, L.P.; Ribeiro-Dos-Santos, R.; et al. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. Int. Immunopharmacol 2008, 8, 1216-1221.

Xyuk, J.E.; Lee, M.Y.; Kwon, O.K.; Cai, X.F.; Jang, H.Y.; Oh, S.R.; Lee, H.K.; Ahn, K.S. Effects of astilbic acid on airway hyperresponsiveness and inflammation in a mouse model of allergic asthma. Int. Immunopharmacol 2011, 11, 266-273.

Brindha, P.; Venkatalakshmi, P.; Vadivel, V. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm 2016, 10(1), 1-2.

Teresa, V.; Francesca, Al.; Alba, Rodríguez-Nogales.; José, Garrido-Mesa.; M, Pillar Utria .; Nassima, T.; Ana María Gómez-C .; Antonio, Segura-C .; M, Elena Rodríguez-C.; Giovanni M .; Julio Gálvez. Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol Nutr Food Res 2017, 61(10).

Choi, C.Y.; You, H.J.; Jeong, H.G. Nitric oxide and tumor necrosis factor-? production by Oleanolic acid via nuclear factor-?B activation in macrophages. Biochem. Biophys. Res. Commun 2001, 288(1), 49-55.

Ayatollahi, A.M.; Ghanadian, M.; Afsharypour, S.; Abdella, O.M.; Mirzaid, M.; Askarie, G. Pentacyclic triterpenes in euphorbia microsciadia with their T-cell proliferation activity. Iranian J. Pharm. Res 2011, 10(2), 287-294.

Khajuria, A.; Gupta, A.; Garai, S.; Wakhloo, B.P. Immunomodulatory effects of two sapogenins 1 and 2 isolated from Luffa cylindrica in BALB/C mice. Bioorg. Med. Chem. Lett 2007, 17(6), 1608-1612.

Sanchez-Tena, S.; Reyes-Zurita, F.J.; Díaz-Moralli S.; et al. Maslinic acid-enriched diet decreases intestinal tumorigenesis in ApcMin/+ mice through transcriptomic and metabolomic reprogramming. PLoS ONE 2013, 8(3), e59392.

Jerjes-Sánchez, Carlos. Thrombolysis in Pulmonary Embolism. Cardiology & Angiology. Springer 2015.

Yujiro Asada, Atsushi Yamashita, Yuichiro Sato, Kinta Hatakeyama. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018, 25, 653-664.

Monika Gorzynik-Debicka, Paulina Przychodzen, Francesco Cappello, Alicja Kuban-Jankowska, Antonella Marino Gammazza, Narcyz Knap, Michal Wozniak, Magdalena Gorska-Ponikowska. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci 2018, 19, 547

Ewelina M. Golebiewska and Alastair W. Poole. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev 2015, 29(3), 153-162.

Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci. 2010, 11:458–79.

Juan Ruano, José Lo´pez-Miranda, Rafael de la Torre, Javier Delgado-Lista, Javier Ferna´ndez, Javier Caballero, María Isabel Covas, Yolanda Jiménez, Pablo Pérez-Martínez, Carmen Marín, Francisco Fuentes, and Francisco Pérez-Jiménez. Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. Am J Clin Nutr 2007, 86, 341- 6.

Velasco J, Dobarganes C. Oxidative stability of virgin olive oil. Eur J Lipid Sci Technol 2002, 104, 661–76.

Jose, A.G.C.; Juan, A, L,V.; Roc?o A , Jose.; Luis, E.; Guillermo, RG.; Jose, P.D.L C. Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. British Journal of Nutrition. 2009, 101, 1157–1164

Sirtori, C.R.; Tremoli, E.; Gatti, E.; Montanari, G.; Sirtori, M.; Colli, S.; et al. Controlled evaluation of fat intake in the Mediterranean diet: comparative activities of olive oil and corn oil on plasma lipids and platelets in high-risk patients. Am. J. Clin. Nutr. 1986, 44, 635-42.

Smith, R.D.; Kelly, C.N.; Fielding, B.A.; Hauton, D.; Silva, K.D.; Nydahl, M.C.; et al. Long-term monounsaturated fatty acid diets reduce platelet aggregation in healthy young subjects. Br. J. Nutr 2003, 90, 597-606.

Mueller, H.W.; Haught, C.A.; McNatt, J.M.; Cui, K.; Gaskell, S.J.; Johnston, D.A.; et al. Measurement of platelet-activating factor in a canine model of coronary thrombosis and in endarterectomy samples from patients with advanced coronary artery disease. Circ. Res 1995, 77, 54-63.

Feliste, R.; Perret, B.; Braquet, P.; Chap, H. Protective effect of BN 52021, a specific antagonist of platelet-activating factor (PAF-acether) against diet-induced cholesteryl ester deposition in rabbit aorta. Atheroscler 1989, 78, 151-8.

Karantonis, H.C.; Antonopoulou, S.; Demopoulos, C.A. Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others. J. Agric. Food Chem 2002, 50, 1150-60.

Togna, G.I.; Togna, A.R.; Franconi, M.; Marra, C.; Guiso, M. Olive oil isochromans inhibit human platelet reactivity. J. Nutr 2003, 133, 2532-6.

Brzosko, S.; De Curtis, A.; Murzilli, S.; de Gaetano, G; Donati, M.B.; Iacoviello, L. Effect of extra virgin olive oil on experimental thrombosis and primary hemostasis in rats. Nutr. Metab. Cardiovasc. Dis. 2002, 12, 337-42.

De la Cruz, J.P.; Villalobos, M.A.; Carmona, J.A.; Mart?n-Romero, M.; Smith-Agreda, J.M.; de la Cuesta, F.S. Antithrombotic potential of olive oil administration in rabbits with elevated cholesterol. Thromb Res 2000, 100, 305-15.

Elzagallaai, A.; Rose, S.D.; Trifaro, J.M. Platelet secretion induced by phorbol esters stimulation is mediated through phosphorylation of MARCKS: A MARCKS?derived peptide blocks MARCKS phosphorylation and serotonin release without affecting pleckstrin phosphorylation. Blood. 2000, 95(3), 894-902.

Schmitz?Spanke, S.; Schipke, J.D. Potential role of endothelin?1 and endothelin antagonists in cardiovascular diseases. Basic Res. in Cardiol. 2000, 95(4), 290-298.

Verhamme, P.; Hoylaerts, M.F. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clinica. Belgica 2006, 61(5), 213-219.

Weinbrenner, T.; Fito, M.; de la Torre R. et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J. Nutr 2004, 134, 2314–2321.

Visioli, F.; Galli, C.; Galli, G.; Caruso, D. Biological activities and metabolic fate of olive oil phenols. Eur J Lipid Sci Technol 2002, 104, 677–684.

Visioli, F.; Bogani, P.; Galli, C. Healthful properties of olive oil minor components, in Olive Oil, Chemistry and Technology. Boskou D (Ed.). AOCS Press, Champaign, IL: 2006, 173-190.

Roc??ode la Puerta, M Eugenia Mart??nez Dom??nguez, Valentina Ru??z-Gut??errez, Jenny A. Flavill, J.Robin S.Hoult. Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sciences 69 (10), 2001, 1213-1222.

Coni, E.; Benedetto, R.; Pasquale, M.; Masella, R.; Modesti, D.; Mattei, R.; Carline E.A. Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids, 2000, 35, 45–54.

Visioli, F.; Galli, C.; Plasmati, E.; Viappiani, S.; Hernandez, A.; Colombo, C.; Sala, A. Olive phenol hydroxytyrosol prevents passive smoking–induced oxidative stress. Circulation 2000, 102, 2169–2171.

Lee Richards, K. The Most Powerful Natural Antioxidant Discovered to Date Hydroxytyrosol. Pro-Health, 2014.

Fernández-Bolaños, J.G.; López, O.; López-García, M.A.; Marset, A. Chapter 20, Biological properties of Hydroxytyrosol and its derivates. In Olive Oil—Constituents, Quality, Health Properties and Bioconversions; In Tech: London, UK, 2012, 375–398.

EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL-cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13 of Regulation (EC) No 1924/2006. EFSA J 2012, 10, 2848.

López-Villodres, J.A.; Abdel-Karim, M.; De La Cruz, J.P.; Rodríguez-Pérez, M.D.; Reyes, J.J.;Guzmán-Moscoso, R.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Effects of hydroxytyrosol on cardiovascular biomarkers in experimental diabetes mellitus. J. Nutr. Biochem 2016, 37, 94–100.

Merola, N.; Castillo, J.; Benavente-García, O.; Ros, G.; Nieto, G. The effect of consumption of citrus fruit and olive leaf extract on lipid metabolism. Nutrients 2017, 9, 1062.

Huang, L.; Guan, T.; Qian, Y.; Huang, M.; Tang, X.; Li, Y.; Sun, H. Anti-inflammatory effects of maslinic acid, a natural triterpene, in cultured cortical astrocytes via suppression of nuclear factor-kappa. B. Eur. J. Pharmacol 2011, 672, 169-174.

Yang, Z.G.; Li, H.R.; Wang, L.Y.; Li, Y.H.; Lu, S.G.; Wen, X.F.; Wang, J.; Daikonya, A.; Kitanaka, S. Triterpenoids from Hippophae rhamnoides L. and their nitric oxide production-inhibitory and DPPH radical-scavenging activities. Chem. Pharm. Bull 2007, 55, 15-18.

Ovesna, Z.; Kozics, K.; Slamenova, D. Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutat. Res 2006, 600, 131-137.

Lin, C.C.; Huang, C.Y.; Mong, M.C.; Chan, C.Y.; Yin, M.C. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J. Agric. Food Chem 2011, 59, 755-762.

Wang, X.; Bai, H.; Zhang, X.; Liu, J.; Cao, P.; Liao, N.; Zhang, W.; Wang, Z.; Hai, C. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial dependent apoptosis. Carcinogen 2013, 34, 1323-1330.

Tsai, S.J.; Yin, M.C. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J. Food Sci 2008, 73, 174?178.

Rong, Z.T.; Gong, X.J.; Sun, H.B.; Li, Y.M.; Ji, H. Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H(2)O(2)-induced injury in vitro. Pharm. Biol. 2011, 49, 78-85.

Tsai, S.J.; Yin, M.C. Anti-oxidative, anti-glycative and antiapoptotic effects of oleanolic acid in brain of mice treated by D-galactose. Eur. J. Pharmacol 2012, 689, 81-88.

Bhatwalkar, S.B.; Shukla, P.; Srivastava, R.K.; Mondal, R.; Anupam, R. Validation of environmental disinfection efficiency of traditional Ayurvedic fumigation practices. J. Ayurveda Integr Med 2019, 10, 203-206.

Razi, Z. Kitab al-Hawi. Central Council for Res. in Unani Med., New Delhi. 2008.

Ludwiczuk, A.; Skalicka-Wo?niak, K.; Georgiev, M.I. Terpenoids. In: Badal, S., Delgoda, R. (Eds.), Pharmacognosy: Fundamentals, Applications and Strategy. Academic Press, Jamaica, 2017, 233-266.

KR20160024092A. Composition comprising extract of Camellia japonica or oleanane triterpenes derivatives isolated therefrom for treating or preventing Corona virus related disease. 2014.

Kalyaanamoorthy, S.; Chen, Y.P. Structure-based drug design to augment hit discovery. Drug Discov. Today 2011, 16, 831-839.

Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D.; Jr. Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach. Curr. Comput. Aided Drug Des 2011, 7, 10-22.

Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The Crytal Structure of 2019-NCoV Main Protease in Complex with an Inhibitor N3. RCSB Protein Data Bank 2020.

Khaerunnisa, Siti.; Hendra, Kurniawan.; Rizki, Awaluddin.; Suhartati, Suhartati.; et Soetjipto, Soetjipto.; Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprint Medicine and Pharmacology 2020.

Sampangi-Ramaiah, M.H.; Vishwakarma, R.; Shaanker, R.U. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr. Sci 2020, 118(7), 10.

Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med 2020, 09, 124:103936