Preprint / Version 1

Vaccine containing immunologic adjuvants with a wide range of activity to provide protection against COVID-19

Authors

  • Mulugeta Berhanu Ethiopian Agricultural Transformation Agency

DOI:

https://doi.org/10.21467/preprints.328

Abstract

This paper proposes a wide spectrum immunologic adjuvant for vaccine development against  COVID-19 which is the current global problem. It has been reported that a wide range of immune cells are involved in the body’s response to SARS CoV2 infection. Therefore, vaccine with a wide-spectrum immunologic adjuvant can be used to provide protection against COVID-19. Lack of adjuvants that can induce the required immune responses is a serious impediment to vaccine development against this devastating virus. The approved adjuvants such as aluminum salts and MF59 exhibit a narrow range of activity. In an attempt to solve this problem, it is crucial to develop new adjuvants which can trigger a wide range of immune cells.

Keywords:

Adjuvant, COVID-19 Vaccine, wide-spectrum immunologic adjuvant

Downloads

Download data is not yet available.

References

Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010 Oct 29;33(4):492-503. doi: 10.1016/j.immuni.2010.10.002. PMID: 21029960; PMCID: PMC3420356.

Cox JC, Coulter AR. Adjuvants--a classification and review of their modes of action. Vaccine. 1997 Feb;15(3):248-56. doi: 10.1016/s0264-410x(96)00183-1. PMID: 9139482.

Derek T. O’Hagan, Rushit N. Lodaya, Giuseppe Lofano (2020): The continued advance of vaccine adjuvants- ‘we can work it out’ https://doi.org/10.1016/j.smim.2020.101426 4. Didierlaurent, A. M. et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183, 6186–6197 (2009).

Edelman R. Vaccine adjuvants. Rev Infect Dis. 1980 May-Jun;2(3):370-83. doi: 10.1093/clinids/2.3.370. PMID: 6997966.

Getu Ayele, 2020 Department of Veterinary Microbiology, College of Veterinary Medicine and Agriculture, University in Addis Ababa, Bishoftu, Ethiopia : Review on recent advances of vaccine adjuvants

Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82:497–505.

Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095-1107. doi:10.1586/erv.10.89

Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009 Jan;30(1):23-32. doi: 10.1016/j.it.2008.09.006. Epub 2008 Dec 6. PMID: 19059004.

Reed, S., Orr, M. & Fox, C. Key roles of adjuvants in modern vaccines. Nat Med 19, 1597–1608 (2013). https://doi.org/10.1038/nm.3409

Schmidt CS, Morrow WJ, Sheikh NA. Smart adjuvants. Expert Rev Vaccines. 2007 Jun;6(3):391-400. doi: 10.1586/14760584.6.3.391. PMID: 17542754.

Sivakumar SM, Safhi MM, Kannadasan M, Sukumaran N. Vaccine adjuvants - Current status and prospects on controlled release adjuvancity. Saudi Pharm J. 2011 Oct;19(4):197-206. doi: 10.1016/j.jsps.2011.06.003. Epub 2011 Jun 25. PMID: 23960760; PMCID: PMC3744968.

Sjolander et al., 1998 A. Sjolander, C. John Cox, G. Ian Barr ISCOMs: an adjuvant with multiple functions J. Leukoc. Biol., 64 (1998), pp. 713-723

Sobolev O, Binda E, O'Farrell S, Lorenc A, Pradines J, Huang Y, Duffner J, Schulz R, Cason J, Zambon M, Malim MH, Peakman M, Cope A, Capila I, Kaundinya GV, Hayday AC. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat Immunol. 2016 Feb;17(2):204-13. doi: 10.1038/ni.3328. Epub 2016 Jan 4. Erratum in: Nat Immunol. 2016 Apr;17(4):469. PMID: 26726811; PMCID: PMC6485475.

Vogel, 1998 F.R. Vogel Adjuvants in perspective F. Brown, L.R. Haaheim (Eds.), Modulation of the Immune Response to Vaccine Antigens. Dev. Biol. Stand., vol. 92, Karger, Basel (1998), pp. 241-248

Downloads

Posted

2021-07-25

Section

Coronavirus

Categories