Reconsidering Traditional Medicinal Plants to Combat COVID-19
DOI:
https://doi.org/10.21467/preprints.34Abstract
COVID – 19 is a deadly disease, caused by a novel coronavirus (SARS-CoV-2) that is rapidly spreading across the globe and causing many fatalities. WHO (World Health Organization) has declared this disease as pandemic. Currently the disease has no treatment available in the form of medicine or vaccine. Ayurveda is an ancient Indian system of medicine, been practiced in India for nearly 5000 years and relies majorly on plants for its formulations. These herbal formulations and immunity boosters may show us the path to come up with a broad-spectrum antiviral product, which is the need of the hour. In this review, we have selected plants like Phyllanthus spp., Andrographis paniculata, Curcuma longa, Zingiber officinale, Glycyrrhiza glabra, and Withania somnifera with reported antiviral properties. While others like Tinospora cordifolia and Emblica officinalis that have immunity boosting properties. The exact mechanisms of action for all the plants may not be clear as per modern medicine, but their history of safe use is in place.
Keywords:
COVID -19, Antiviral, Immunity–boosterDownloads
References
Chen D. Y., Shien J. H., Tiley L. and Shyan-Song C. 2010. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry. 119: 1346–1351
Chopra R. N., Nayer S. L., and Chopra I. C. 1956. Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research.
D. Qaiser, A. Srivastava, and A. Qaiser, 2018. “Anticancer Herbs for Improving the Quality of Life”, Int. Ann. Sci., vol. 5, no. 1, pp. 1-11. DOI: https://doi.org/10.21467/ias.5.1.1-11
Dasaroju S. and Gottumukkala K. M. 2014. Current Trends in the Research of Emblica officinalis (Amla): A Pharmacological Perspective. Int. J. Pharm. Sci. Rev. Res. 24(2): 150-159.
Dimas P, Lisa K , Janina B , Heni R , Joerg S and Eike S 2019. Anti-infective Properties of the Golden Spice Curcumin. Frontiers in Microbiology, Volume 10, Article 912.
Feng Yeh C., Wang K. C., Chiang L. C., Shieh D. E., Yen M. H. and San Chang J. 2013. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 148(2):466-73.
Fiore C., Eisenhut M., Krausse R. Ragazzi E., Pellati D., Armanini D. and Bielenberg J. 2008. Antiviral effects of Glycyrrhiza species. Phytotherapy Research. 22(2): 141–148.
Ganjhu R. K., Mudgal P. P., Maity H., Dowarha D., Devadiga S., Nag S. and Arunkumar G. 2015. Herbal plants and plant preparations as remedial approach for viral diseases. VirusDis. 26(4):225–236
Grover A., Agrawal V., Shandilya A., Bisaria V. S. and Sundar D. 2011. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics. 12(13):S22
Gupta S., Mishra K. P. and Ganju L. 2016. Broad-spectrum antiviral properties of Andrographolide. Archives of Virology. 162(3):611-623.
Hudson J. and Vimalanathan S. 2011. Echinacea—A Source of Potent Antivirals for Respiratory Virus Infections. Pharmaceuticals. 4:1019-1031.
Ibrahim J., Md. Areeful H., Menaga I. and Laiba A. 2019. An Insight Into the Modulatory Effects and Mechanisms of Action of Phyllanthus Species and Their Bioactive Metabolites on the Immune System. Front. Pharmacol.
Kalikar M. V., Thawani V. R., Varadpande U. K., Sontakke S. D., Singh R.P. and Khiyani R. K. 2008. Immunomodulatory effect of Tinospora cordifolia extract in human immuno-deficiency virus positive patients. Indian J. Pharmacol. 40(3):107-110
Kharisma V. D., Syafrudin and Septiadi L. 2018. Prediction of Novel Bioactive Compound from Zingiber officinale as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) of HIV-1 through Computational Study. Bioinfo. Biomedic. Research. Journal. 1(2):49-55.
Kuttan R. and Harikumar K. B. 2011. Phyllanthus Species: Scientific Evaluation and Medicinal Applications (Traditional Herbal Medicines for Modern Times).
Lee C.D., Ott M., Thyagarajan S. P., Shafritz D. A., Burk R. D., Gupta S. 1996. Phyllanthus amarus down-regulates hepatitis B virus mRNA transcription and replication. Eur J Clin Invest. 26(12):1069-76.
Lee S. H. Tang Y. Q., Rathkrishnan A., Wang S. M., Ong K. C., Manikam R., Payne B. J., Jaganath I. B. and Sekaran S. D. 2013. Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2. BMC Complementary and Alternative Medicine. 13:192
Mazumder A., Raghavan K., Weinstein J., Kohn K. W., Pommier Y. 1995. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol. 49: 1165–1170.
Mehrotra R., Rawat S., Kulshreshtha D. K., Goyal P., Patnaik G. K. and Dhawan B. N. 1991. In vitro effect of Phyllanthus amarus on Hepatitis B virus. Indian J. Med. Res. 93: 71-73
Misra B. 2004. Ashwagandha - Bhavprakash Nigantu (Indian Materia Medica) Varanasi. Chaukhambha Bharti Academy. pp. 393–394.
Naithani R., Mehta R., Shukla D., Chandersekera S., and Moriarty R. 2010. Antiviral Activity of Phytochemicals: A Current Perspective.
Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J. and Steinmann E. 2019. Anti-infective Properties of the Golden Spice Curcumin. Front. Microbiol. 10:912. doi: 10.3389/fmicb.2019.00912
Ruwali P., Rai N., Kumar N., Gautam P. 2013. Antiviral potential of medicinal plants: An overview. International Journal of Pharmacy. 4 (6)
Shah A. and Krishnamurthy R. 2013. Swine Flu and Its Herbal Remedies. The International Journal of Engineering and Science (IJES). 2(5):68-78
Sharma D. N. and Sharma A. 2015. Tinospora cordifolia Enhances Vyadhikshamatwa (immunity) in Children. The Journal of Phytopharmacology. 4(4): 227-230.
Wahyuni T. S., Azmi D., Permanasari A., Adianti M. 2019. Anti-viral activity of Phyllanthus niruri against hepatitis c virus. Malays. Appl. Biol. 48(3): 105–111
Zandia K., Ramedania E., Mohammadic K., Tajbakhsh S., Deilami I., Rastian Z., Fouladvand M., Yousefi F., Farshadpour F. 2010. Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line. Natural Product Communications. 5 (12):1935-1938.
Downloads
Posted
Section
Categories
License
Copyright (c) 2020 Namrata Gangal, Vinod Nagle, Yogesh Pawar, Santanu Dasgupta

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Any non-commercial use, distribution, adaptation, and reproduction in any medium is permitted as long as the original work is properly cited. However, caution and responsibility are required when reusing as the articles on the preprint server are not peer-reviewed. Readers are advised to check for the availability of any updated or peer-reviewed version.