Preprint / Version 1

Outfitting COVID-19: An Effective Therapeutic Approach




Use of antisense oligonucleotides of the type 3'-(N)x-AAAUUUG-(N)x-5' against slippery sequence  and polynucleotides against pseudoknots forming sequences of SARS-CoV-2 RNA would block the first translation of ORF1a and ORF1b and hence dwindle the virus replication. It is easy to synthesize and deliver the antisense oligonucleotides to the target by directly injecting the nano formulation into the blood.


Oligonucleotides, Nanoparticle, Slippery sequence, Pseudoknots


Download data is not yet available.


Forster P, Forster L, Renfrew C and Forster M (2020) Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA, pii: 202004999. doi: 10.1073/pnas.2004999117.

Zhou P, Yang XL, Wang XG and Hu B et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579: 270-273. doi: 10.1038/s41586-020-2012-7.

Andersen KG, Rambaut A, Lipkin WI, Holmes EC and Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med, 26: 450-452. doi: 10.1038/s41591-020-0820-9.

Li Y, Li H and Zhou L (2020) EZH2-mediated H3K27me3 inhibits ACE2 expression. Biochem Biophys Res Commun. 2020 Apr 8. pii: S0006-291X(20)30708-7. doi: 10.1016/j.bbrc.2020.04.010.

Talreja H, Tan J, Dawes M, Supershad S, et al. (2020) A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). N Z Med J, 133: 85-87.

Jennifer Abbasi J (2020) The promise and peril of antibody testing for COVID-19. JAMA, Published online April 17, 2020. doi:10.1001/jama.2020.6170

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J et al. (2020) Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA, 2020 Mar 27. doi: 10.1001/jama.2020.4783.

Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. (2020) Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020 Apr 6. pii: 202004168. doi: 10.1073/pnas.2004168117.

Tan YW, Hong W and Liu DX (2012) Binding of the 5?-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription. Nucleic Acids Res. 2012;40: 5065–5077. doi: 10.1093/nar/gks165.

Brierley I, Meredith MR, Bloys AJ and Hagervall TG (1997) Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J Mol Biol. 270(3):360-373.

Brierley I, Pennell S and Gilbert RJC (2007) Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nature Reviews Microbiology, 5:598–610.

Wu C.-H., Chen P.-J., Yeh S.-H. (2014) Nucleocapsid phosphorylation and RNA helicase ddx1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microb, 16: 462–472. doi: 10.1016/j.chom.2014.09.009.

Furuichi Y, Muthukrishnan S, Tomasz J and Shatkin AJ (1976) Mechanism of formation of reovirus mRNA 5?-terminal blocked and methylated sequence, m7GpppGmpC. J Biol Chem, 251: 5043–5053.

Furuichi Y and Shatkin AJ (2000) Viral and cellular mRNA capping: past and prospects. Adv. Virus Res. 55:135–184.

Ferron F, Subissi L, Silveira De Morais AT, et al. (2018) Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA. 115(2): E162-E171. doi: 10.1073/pnas.1718806115.

Daffis S, Szretter KJ, Schriewer J, et al. (2010) 2?-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468:452–456.

Zust R, Cervantes-Barragan L, Habjan M, et al. (2011) Ribose 2?-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12:137–143.

Nakagawa K, Lokugamage KG and Makino S (2016) Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res, 96: 165-192. doi: 10.1016/bs.aivir.2016.08.001.

Chen Y, Cai H, Pan J, Xiang N, Tien P and Ahola T (2009) Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA, 106: 3484–3489.

Chen SC and Olsthoorn RC (2010) Group-specific structural features of the 5?-proximal sequences of coronavirus genomic RNAs. Virology, 401: 29–41.

Chen Y, Su C, Ke M, Jin X, Xu L and Zhang Z (2011) Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2?-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7:e1002294.

Ishimaru D, Plant EP, Sims AC, et al. (2013) RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Nucleic Acids Res. 2013 Feb 1;41(4):2594-608. doi: 10.1093/nar/gks1361.

Staple DW and Butcher SE (2005) Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol 3(6): e213.

Dawson WK, Fujiwara K and Kawai G (2007) Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding. PLoS One. 2(9):e905.

Kim YD, Park TE, Singh B, et al. (2015) Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (Lond), 10: 1165-1188. doi: 10.2217/nnm.14.214.

Draz MS, Fang BA, Zhang P, et al. (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 4: 872-892. doi: 10.7150/thno.9404.