Preprint / Version 2

Time Expansion at the Interface of Organic Metallic Surfaces


  • Itai Carmeli Department of Material Engineering, Tel Aviv University



Giant magnetization of polyalanine monolayers on gold observed in recent years along with unusual large spin selectivity, the potential of the film, and its temperature dependence are all explained in the context of vacuum polarization at the gold-monolayer interface. The enhancement is directly related to the fine structure constant, a and involves a change in basic physical parameters including changes in the permeability of the vacuum and in the local zero point energy (ZPE) of the gold-monolayer interface. Formation of an ordered state by the self-assembly process and the interaction of the monolayer with the gold plasmons form a new state of matter that can interact strongly with the ZPE.


Interfaces, ZPE, Vacuum Polarization


Download data is not yet available.


I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, J. Chem. Phys. 118,10372 (2003).

I. Carmeli, Z. Gefen, Z. Vager and R. Naaman, Phys. Rev. B. 68, 115418 (2003).

I. Carmeli, G. Leitus, R. Naaman, S. Reich, and Z. Vager, Isr. J. of Chem. 43, 399 (2003).

S.G. Ray, S.S. Daube, G. Leitus, Z. Vager and R. Naaman, Phys. Rev. Lett. 96, 036101 (2006).

A. Hernando et. al. Phys. Rev. B. 74, 052403 (2006).

P. Crespo Phys. Rev. Lett. 93, 087204 (2004).

R. Naaman and Z. Vager, Phys. Chem. Chem. Phys. 8, 2217 (2006).

M. Ventakesan, C.B. Fitzgerald and M. D. Coey, Nature, 430, 630 (2004).

G. Kopnov, Z. Vager and R. Naaman, Adv. Matt. 19, 925 (2007).

I. Carmeli, “The effect of spin on photoelectron transmission through organized organic thin films” Ph.d thesis, Weizmann Institute of science, Rehovot, Israel, page 17-18 (2003).

O. Neuman and R. Naaman, The Journal of Phys. Chem. B. Lett. 110, 5163 (2006).

S. Reich, G. Leitus and Y. Feldman, Appl. Phys. Lett. 88, 222502 (2006).

R. Deblock, R. Bel, B. Reulet, H. Bouchiat and D. Mailly, Phys. Rev. Lett. 89, 206803 (2002).

I. I. Smolyaninov Phys. Rev. B. 71, 035425 (2005).

I. Yoseph, Phys. Rev. Lett. 95, 080404 (2005).

I. Norio, J. Phys. Soc. Japan. 75, 084004 (2006).

Berkeley Physics Course, Vol 4, pg-33, education development center, Inc. Newton, Massachusetts (1971).

Zeev Vager and Ron Naaman, Chem. Phys. 281,305 (2002).

H.B.G. Casimir, Proc. Kon. Ned. Akad, Wetenschap, 51, 793 (1948).

W.E. Lamb, Rep. Prog. Phys, 14, 19 (1951).

H.B.G. Casimir and D. Polder, Phys.Rev, 73, 360 (1948).

Scharnhorst, K, Phys. Lett. B, 236, 354 (1990). G. Barton and K. Scharnhorst, J. Phys.A: Matt. Gen, 26, 2037 (1993).

The electrostatic equations are: where C is the capacitance, m- length, e- electron’s charge and N is the force, applying the scaling factor to the units above we obtain: thus, there is no total change in the units of ?0. For the permeability: where A stands for Ampere and s for seconds. ?0 increase by a factor of q2:

Zeev Vager and Ron Naaman, PRL, 92, 0872051 (2004).

Ferdinand Evers, et. al, , Adv.Mater., 34, 2106629, (2022).

D. H. Waldeck, R. Naaman, and Y. Paltiel, APL Materials, 9, 040902 (2021).

G. Nicolis, I. Prigogine, SELF ORGANIZATION IN NONEQUILIBRIUM SYSTEMS, Wiley, N.Y. 1977; A. Hasegawa, "Self-Organization Processes in Continuous Media," Adv. Phys. 34(1), 1-42 (1985).

Gooth, J. et al. Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

Kim, I. H., Shi, B., Kato, K. & Albert, V. V. Chiral Central Charge from a Single Bulk Wave Function. Phys. Rev. Lett. 128, 176402 (2022).

Fan, R. From entanglement generated dynamics to the gravitational anomaly and chiral central charge. Preprint at (2022).



2022-10-05 — Updated on 2022-11-17