Therapeutic and Nutritional Potential of Spirulina in Combating COVID-19 Infection
DOI:
https://doi.org/10.21467/preprints.49Abstract
Human history has witnessed various pandemics throughout, and these cause disastrous effects on human health and country’s economy. Once again, after SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome), the world is observing a very tough time fighting an invisible enemy, the novel COVID-19 coronavirus. Initially observed in the Wuhan province of China, now, it has spread across 210 countries. Number of corona affected confirmed cases have reached > 3 million globally and death toll has reached to 258,481 as on 6th May,2020. Researchers are working round the clock, forming collaborative efforts and sharing their data to come up with a cure for this disease. The new coronavirus genome was quickly sequenced and clinical and epidemiological data are continuously being collected and analyzed. This data is crucial for forming better public health policies and developing antiviral drugs and vaccines. As there is no vaccine available in market against COVID-19, personal health, immunity, social distancing and basic protection measures are extremely important. It is critical to avoid the virus infection and to strengthen the immune system as the coronavirus can be fatal for those with weak immunity. This article reviews the nutritional and therapeutic potential of Spirulina, which is considered as superfood and a natural supplement to strengthen the immune system. Spirulina is highly nutritious and has hypolipidemic, hypoglycemic and antihypertensive properties. Spirulina contains several bioactive compounds, such as phenols, phycobiliproteins and sulphated polysaccharides and many more with proven antioxidant, anti-inflammatory and immunostimulant/ immunomodulatory effects.
Keywords:
COVID-19, Antiviral, Immunity, Antioxidant, Anti-inflammatory, Polysaccharides, SpirulinaDownloads
References
Abdulqader, G., Barsanti, L., Tredici, M. 2000. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. Journal of Applied Phycology. 12:493–498.
Admassu, H., Zhao, W., Yang, R., Gasmalla, M., Alsir, E. 2015. Development of functional foods: seaweeds (algae) untouched potential and alternative resource—a review. Int J Sci Technol Res. 4:108–115.
Baicus, C., and Baicus, A., 2007. Spirulina did not ameliorate idiopathic chronic fatigue in four N-of-1 randomized controlled trials. Phytotherapy Research. 21 (6): 570–573.
Belay, A. 1997. Mass culture of Spirulina outdoors. The Earthrise Farms experience. In: Vonshak, A., Ed. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor and Francis. London. pp. 131–158.
Belay, A. 2002. The potential application of Spirulina (Arthrospira)as a nutritional and therapeutic supplement in health management. Journal of the American Nutraceutical Association. 5: 27–48.
Bhat, V.B., Madyastha, K.M. 2000. C-Phycocyanin: A Potent Peroxyl Radical Scavenger in Vivo and in Vitro. Biochemical and Biophysical Research Communications. 275 (1): 20-25.
Chamorro, G., Salazar, S., Favila-Castillo, L., Steele, C., and Salazar, M. 1997. Reproductive and peri-and postnatal evaluation of Spirulina maxima in mice. Journal of Applied Phycology. 9 (2): 107–112.
Chew, B.P. and Park, J.S.2004. Carotenoid action on the immune response. Journal of Nutrition. 134(1): 257–261.
Cheng-Wu, Z., Chao-Tsi, T., Zhen, Z.T.Y. 1994. The effects of polysaccharide and phycocyanin from Spirulina platensis on peripheral blood and hematopoietic system of bone marrow in mice. Proceedings of the Second Asia-Pacific Conference on Algal Biotechnology. National University of Singapore. p. 58.
Chen, J.C., Liu, K.S., Yang, T.J., Hwang, J.H., Chan, Y.C., Lee, I.T. 2012. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutritional Neuroscience;15(6):252–256.
Chirasuwan, N., Chaiklahan, R., Kittakoop, P., Chanasattru, W., Ruengjitchatchawalya, M., Tanticharoen, M. and Bunnag, B. 2009. Anti HSV-1 activity of sulphoquinovosyl diacylglycerol isolated from Spirulina platensis. Science Asia 35: 137–141.
Chirasuwan, N., Chaiklahan, R., Ruengjitchatchawalya, M., Bunnag, B. and Tanticharoen, M. 2007. Anti HSV-1 activity of Spirulina platensis polysaccharide. Kasetsart J (Nat Sci) 41:311–8.
Ciferri, O. and Tiboni, O. 1985. Ann. Rev. Microbiology, 89, 503- 526
Cleaveland, S., Laurenson, M.K. and Taylor, L.H. 2001. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Phil. Trans. R. Soc. Lond. B. 356, 1411, 991-999.
Deng, F., Lu, J.J., Liu, H.Y., Lin, L.P., Ding, J. and Zhang, J.S. 2011. Synthesis and antitumor activity of novel salvicine analogues. Chin Chem Lett. 22: 25-28.
Deng, R. and Chow, T.J. 2010. Hypolipidemic, antioxidant, and anti-inflammatory activities of microalgae Spirulina. Cardiovasc Ther 28 (4): 33–45.
Dillon, J.C., Phuc, A.P. and Dubacq, J.P. 1995. Nutritional value of the alga Spirulina. World Review of Nutrition and Dietetics. 77: 32–46.
Falquet, J. 1997. The Nutritional Aspects of Spirulina. Antenna Technologies. 1-25 pp
Feldmann, S.C., Reynaldi, S., Stortz, C.A., Cerezo, A.S. and Damont, E.B. 1999. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 6: 335–340.
Food Drug Administration.2003. FDA Agency Response Letter GRAS Notice No. GRN 000127 [Internet]. Available on https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=127
Garcia-Martinez, C., Cordón, O. and Herrera, F. 2007. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research. 180 (1): 116-148.
Gershwin, M.E. and Belay, A. 2007. Spirulina in human nutrition and health. CRC Press, USA.
Gorban, E.M., Orynchak, M.A., Virstiuk, N.G., Kuprash, L.P., Panteleimonova, T.M. and Sharabura, L.B. 2000. Clinical and experimental study of Spirulina efficacy in chronic diffuse liver diseases. Lik. Sprava. 6: 89-93
Gorobets, O.B., Blinkova, L.P. and Baturo, A.P. 2002. Action of Spirulina platensis on bacterial viruses, Zh Mikrobiol Epidemiol Immunobiol. (6):18-21.
Gustafson, K. R., Cardellina III, J. H., Fuller, R. W., Weislow, O. S., Kiser, R. F., Snader, K. M., Patterson, G. L. and Boyd, M. R. 1989. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J. Natl. Cancer Inst. 81: 1254–1258
Habib, M.A.B., Parvin, M., Huntington, T.C., Hasan, M.R. 2008. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. No. 1034. Rome, FAO. 33p
Habib, M., Ahsan, B., Parvin, M., Huntington, T.C., Hasan, M.R. 2011. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations.
Hayashi, K., Hayashi, T. and Morita, N. 1993. An extract from Spirulina platensis is a selective inhibitor of Herpes simplex virus type 1 penetration into HeLa cells. Phytother Res. 7:76-80.
Hayashi, K., Hayashi, T. and Kojima, I. 1996a. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12:1463-1471.
Hayashi, T., Hayashi, K., Maedaa, M. and Kojima, I. 1996b. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue green alga Spirulina platensis. J Nat Prod. 59:83-87.
Helliwell, K.E., Wheeler, G.L., Leptos, K.C., Goldstein, R.E. and Smith, A.G. 2011. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol. 28: 2921-2933.
Henrikson, R. 1994. “Superfood Spirulina microalgae future”, Microalgae Spirulina, superalimento del futuro. 2nd edition. Ronore Enterprises; 222 p.
Hernández-Corona, A., Nieves, I., Meckes, M., Chamorro, G., and Barron, B.L. 2002. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res.56 (3):279-85.
Ishii, K., Katoch, T., Okuwaki, Y. and Hayashi, O. 1999. Influence of dietary Spirulina platensis on IgA level in human saliva. Journal of Kagawa Nutrition University. 30: 27–33.
Kapoor, R. and Mehta, U. 1993. Utilization of beta-carotene from Spirulina platensis by rats. Plants Foods for Human Nutrition. 43(1):1–7. DOI: 8464841.
Kazuya, I.P.J., Hidari, Tomoko, Abe and Takashi, Suzuki. 2013. Carbohydrate-Related Inhibitors of Dengue Virus Entry, Viruses 5:605-618.
Kelly, M., Bob, C., Cysewski, R., Gerald. 2011. Spirulina Nature’s Superfood. 3rd edition published by Cyanotech Corporation, 73-4460 Queen Kaahumanu Hwy #102, Kailua-Kona, HI 96740, USA.
Khan, Z., Bhadouria, P., Bisen, P.S. 2005. Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology. 6:373–379. DOI: 16248810
Kulshreshtha, G., Rathgeber, B., Stratton, G., Thomas, N., Evans, F., Critchley, A., Hafting, J., Prithiviraj, B. 2008. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci. 2014; 93:2991–3001. doi: 10.3382/ps.2014-04200.
MOHFW 2020; Immunity Boosting AYUSH. Ministry of AYUSH advise on immunity boosting https://www.mohfw.gov.in/pdf/ImmunityBoostingAYUSHAdvisory.pdf.
Mathew, B., Sankaranarayanan, R., Nair, P., Varghese, C., Somanathan, T., Amma, P., Amma, N. and Nair, M. 1995. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr. Cancer. 24: 197-202.
McCarty, M.F. 2007. Clinical potential of Spirulina as a source of phycocyanobilin. J. Med. Food. 10 (4): 566-570.
Max, R., Hannah, R, Esteban, O.S., and Joe, H.,2020. Mortality risk of COVID19. Statistics and research available on https://ourworldindata.org/mortality-risk-covid
Nichols, B. and Wood, B. 1986. The occurrence and biosynthesis of gamma linolenic acid in Spirulina platensis. Lipids. 3(1):46–50. DOI: 10.1007/BF02530968
Ozdemir, G., Karabay, N.U., Dalay, M.C., Pazarbasi, B. 2004. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research; 18(9):754–757. DOI: 10.1002/ptr.1541
Parry E.I.D. (India) Limited. 2014. Spirulina for Children. Parry Nutraceuticals Division. Dare House, 4th Floor, # 234, N.S.C. Bose Road, Parrys Corner, Chennai – 600001, India.
Patel, A., Mishra, S., Glosh, P. 2006. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya phormidium and Spirulina sp., Indian Journal of Biochemistry and Biophysics, 43, 25-31.
Patterson, G.M.L., Baker, K.K., Baldwin, C.L., Bolis, C.M., Caplan, F.R., Larson, L.K., Levine, I.A., Moore, R.E., Nelson, C.S., Tschappat, K.D., Tuang, G.D., Boyd, M.R., Cardellina, J.H., Collins, R.P., Gustafson, K.R., Snader, K.M., Weislow ,O.S. and Lewin, R.A. 1993. Antiviral activity of cultured blue-green algae (Cyanophyta). J Phycol.29:125-130.
Rabadiya, B. and Patel, P. 2010. Spirulina: Potential clinical therapeutic application (review). Journal of Pharmacy Research; 3(8):1726–1732.
Reddy, M.C., Subhashini, J., Mahipal, S. V. K. 2003. “C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW
7 macrophages,” Biochemical and Biophysical Research Communications, vol. 304, no. 2, pp. 385–392.
Rhoades, J.D., Kandiah, A., Mashali. 1992. The Use of Saline Waters for Crop Production. Food and Agriculture Organization of the United Nation, Rome.145 pp
Salazar, M., Chamorro, G., Salazar, S., and Steele, C. 1996. Effect of Spirulina maxima consumption on reproductive and peri- and postnatal development in rats. Food and Chemical Toxicology. 34 (4): 353–359.
Salazar, M., Mart´?nez, E., Madrigal, E., Ruiz, L.E., and Chamorro, G.A. 1998. Subchronic toxicity study in mice fed Spirulina. Journal of Ethnopharmacology. 62 (3): 235–241.
Sánchez, M., Bernal-Castillo, J., Rozo, C., Rodríguez, I. 2003. Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum. 8(1):7–24. PMC283708
Sasson, A.1997. Micro Biotechnologies: Recent Developments and Prospects for Developing Countries. Place de Fontenoy, Paris. France: United Nations Educational, Scientific and Cultural Organization (UNESCO), BIOTEC Publication 1/2542; p. 11–31.
Sayda, M.A., Mona, H.H., Waleed, M. E.S., Rawheya, A., Salah, E.D. and Gamila, H.A. 2012. Antiviral activity of fresh water algae. J. Applied pharmaceutical sciences, 2 (2): 21-25.
Sharma, V. and Dunkwal, V. 2012. Development of Spirulina based biscuits: A potential method of value addition. Ethno Med. 6(1): 31-34.
Shih, S.R., Tsai, K.N., Li, Y.S., Chueh, C.C. and Chan, E.C. 2003. Inhibition of enterovirus 71 – induced apoptosis by allophycocyanin isolated from a blue – green alga Spirulina platensis, J.Med. Virol. 70 (1): 119 – 25.
Sili, C., Torzillo, G., and Vonshak, A. 2012. “Arthrospira (Spirulina),”in Ecology of Cyanobacteria II, B. A. Whitton, Ed., pp. 677–705, Springer, Dordrecht, The Netherlands.
Simpore, J., Zongo, F., Kabore, F., Dansou, D., Bere, A., Nikiema, J.B., Pignatelli, S., Biondi, D.M., Ruberto, G. and Musumeci, S. 2005. Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing Spirulina. Ann Nutr Metab. 49 (6):373-80.
Singh, R.K., Tiwari, S.P., Rai, A.K. and Mohapatra, T.M. 2011. Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics 64:401–412.
Siva Kiran RR, Madhu GM, Satyanarayana SV. 2015. Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW)—A review. Journal of Nutrition Research.3(1):62–79. DOI: 10.13140/RG.2.1.3149.0325.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96, doi: 10.1263/jbb.101.87
Stahl, W. and S?ed, H. 2005. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta.;1740(2):101–107. DOI: 10.1016/j.bbadis.2004.12.006
Tadros, M.G. and Normal, A.l. 1988. Characterization of Spirulina biomass for CELSS diet potential.NASA Technical Reports Server. DOI: 19940009624
Tarantino, L.M. 2003. Agency Response Letter GRAS Notice No. GRN000127. FDA Home page.
Theodore, G.S. and Georgios, T.S. 2013. Health aspects of Spirulina (Arthrospira) microalga food Supplement, J. Serb. Chem. Soc. 78 (3) 395–405.
Vonshak A. 1997. Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis; London. DOI: 10.1023/A:1008177925799
Weid, D.V.D. 2000. Malnutrition: a silent massacre, Antenna Technologies.
World Health Organization 2020. Coronavirus outbreak situation report-106 available on https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
Zhou, P. et. al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. doi:10.1038/s41586-020-2012-7
Zarrouk, C. 1966. Contribution to the cyanophyceae study: influence various physical and chemical factors on growth and photosynthesis of Spirulina maxima. [thesis]. Faculty of Science, University of Paris.
Downloads
Posted
Section
Categories
License
Copyright (c) 2020 Sunita Singh, Vinay, Debanjan, Santanu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Any non-commercial use, distribution, adaptation, and reproduction in any medium is permitted as long as the original work is properly cited. However, caution and responsibility are required when reusing as the articles on the preprint server are not peer-reviewed. Readers are advised to check for the availability of any updated or peer-reviewed version.