Physics for Surgeons-Part 5: Optics for Surgeons
DOI:
https://doi.org/10.21467/preprints.502Abstract
Optical techniques create a great impact in the biomedical field. Recent advances in the optical techniques (advances in photonics, biomaterials, genetic engineering, and nanotechnology) which are currently used in clinical practice to diagnose and treat the disease. In the present review, we highlight the fundamentals of light and its interaction with matter, applications of optics in the recent techniques so that surgeons can better understand the pattern of disease and find the best way to treat the disease.
Keywords:
Fundamental of light, disease, Diagnosis, LaserDownloads
References
Seok Hyun Yun, Sheldon J.J. Kwok, “Light in diagnosis, therapy and surgery”, Nat. Biomed Eng., 2017 page 1-32.
Tuan Vo Dirh, Biomedical Photonics – Handbook, CRC Press, Bocaraton, 2003.
Paras.N. Prasad, Introduction to Biophotonics, Wiley Interscience, 2003
Born and Wolf (1959). Principles of Optics. New York, NY: Pergamon Press INC. p. 37.].
Mourant JR, Freyer JP, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt 1998; 37: 3586-3593
Bigio IJ, Mourant JR, Boyer J, Johnson T. "Elastic scattering spectroscopy as a diagnostic for tissue pathologies," in Proceedings of 1994 Conference on Lasers and Electro-Optics and The International Electronics Conference CLEO/IQEC, 8-13 May 1994, (Opt. Soc. America, Anaheim, CA, USA, 1994), 1994: 70-71
Bigio IJ, Mourant JR, Boyer J, Johnson TM. "Elastic scatter- ing spectroscopy for diagnosis of tissue pathologies," in OSA Trends in Optics and Photonics on Biomedical Optical Spectroscopy and Diagnostics. Vol.3. From the Topical Meeting, 20-22 March 1996, (Opt. Soc. America, Orlando, FL, USA, 1996), 1996: 14-19
Chaiken J, Goodisman J, Deng B, Bussjager RJ, Shaheen G. Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds. J Biomed Opt 2009; 14: 050505
Shafer-Peltier KE, Haka AS, Motz JT, Fitzmaurice M, Dasari RR, Feld MS. Model-based biological Raman spectral imaging. J Cell Biochem Suppl 2002; 39: 125-137
J.P. Uzan, B. Leclercq, “ The Natural laws of the Universe: Understanding Fundamental Constants”, Translated by Robert Mizon, Sringer-Praxis, International Archive: 2020
Photodynamic Therapy of Cancer: An Update, Patrizia Agostinis, Kristian Berg, Keith A. Cengel, Thomas H. Foster, Albert W. Girotti, Sandra O. Gollnick, Stephen M. Hahn, Michael R. Hamblin, Asta Juzeniene, David Kessel, Mladen Korbelik, Johan Moan, Pawel Mroz, Dominika Nowis, Jacques Piette, Brian C. Wilson, Jakub Golab, CA CANCER J CLIN 2011;61:250–281]
Gläser R, et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J Allergy Clin Immunol. 2009; 123:1117–1123. [PubMed: 19342087]
Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN 978-1316785164.
Harman, Peter Michael (1998). The natural philosophy of James Clerk Maxwell. Cambridge, UK: Cambridge University Press. p. 6. ISBN 0-521-00585-X.
"Electromagnetic Frequency, Wavelength and Energy Ultra Calculator". 1728.org. 1728 Software Systems. Retrieved 15 Jan 2018.
"How Radio Waves Are Produced". NRAO. Archived from the original on 28 March 2014. Retrieved 15 Jan 2018.
D. Qaiser, P. Ranjan, K. Kataria, A. Dhar, and A. Srivastava, “Physics for Surgeons - Part 4: Energy Devices in Surgery”, Int. Ann. Sci., vol. 9, no. 1, pp. 122-131, Apr. 2020. doi: 10.21467/ias.9.1.122-131.
W. Herschel, Phil. Tans. Re. Soc. London 90, 284, (1800).
Theophanides Theophile, “Infrared Spectroscopy: Material Science, engineering and technology”, Edition 2012.
Arany PR, et al. Photoactivation of endogenous latent transforming growth Factor-beta 1 directs dental stem cell differentiation for regeneration. Sci Transl Med. 2014; 6:238ra69.
Dai T, et al. Blue light rescues mice from potentially fatal pseudomonas aeruginosa burn infection: Efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013; 57:1238–1245. [PubMed: 23262998]
Dai T, et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat. 2012; 15:233–236.
Maisels MJ, McDonagh AF. Phototherapy for neonatal jaundice. N Engl J Med. 2008; 358:920–928. [PubMed: 18305267]
Lam RW, et al. Efficacy of Bright Light Treatment, Fluoxetine, and the Combination in Patients With Nonseasonal Major Depressive Disorder. JAMA Psychiatry. 2015; 73:1.
Liu PT, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311:1770–1773. [PubMed: 16497887]
Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst. 1974; 53:1333–1336. [PubMed: 4139281].
Caldwell, Wallace E.; Merrill, Edward H. (1964). History of the World. Vol. 1. United States: The Greystone Press. p. 394.
Anderson JG (January 1945). "William Morgan and X-rays". Transactions of the Faculty of Actuaries. 17: 219–221.
Tuan Vo Dirh, Biomedical Photonics – Handbook, CRC Press, Bocaraton, 2003.
Paras.N. Prasad, Introduction to Biophotonics, Wiley Interscience, 2003
Zaret MM, et al. Ocular lesions produced by an optical maser (laser). Science. 1961; 134:1525–1526. [PubMed: 14009883]
Goldman L, Wilson RG. Treatment of basal cell epithelioma by laser radiation. JAMA. 1964; 189:773–775. [PubMed: 14174061]
National Academies of Sciences, Engineering, and Medicine. 1998. Harnessing Light: Optical Science and Engineering for the 21st Century. Washington, DC: The National Academies Press. https://doi.org/10.17226/5954.
Sakimoto T, Rosenblatt MI, Azar DT. Laser eye surgery for refractive errors. Lancet. 2006; 367:1432–1447. [PubMed: 16650653]
Marshall J, Trokel S, Rothery S, Krueger R. Long-term healing of the central cornea after photorefractive keratectomy using an exicmer laser. Opthalmology. 1988; 95:1411–1421.
Palanker DV, et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci Transl Med. 2010; 2:58ra85.
Tanzi EL, Lupton JR, Alster TS. Lasers in dermatology: four decades of progress. J Am Acad Dermatol. 2003; 49:1–34. [PubMed: 12833005]
Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983; 220:524–527. [PubMed: 6836297]
Anderson RR, Parrish Ja. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981; 1:263–276. [PubMed: 7341895]
Fitzpatrick RE, Goldman MP, Satur NM, Tope WD. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol. 1996; 132:395–402. [PubMed: 8629842]
Gilling P, Cass C, Cresswell M, Fraundorfer M. Holmium laser resection of the prostate: preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology. 1996; 47:48–51. [PubMed: 8560662]
Malek RS, Kuntzman RS, Barrett DM. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology. 1998; 51:254–256. [PubMed: 9495707]
Sofer M, et al. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol. 2002; 167:31–34. [PubMed: 11743269]
Wazni O, et al. Lead extraction in the contemporary setting: the LExICon study: an observational Retrospective study of consecutive laser lead extractions. J Am Coll Cardiol. 2010; 55:579–586. [PubMed: 20152562]
Wilkoff BL, et al. Pacemaker lead extraction with the laser sheath: results of the pacing lead extraction with the excimer sheath (PLEXES) trial. J Am Coll Cardiol. 1999; 33:1671–1676. [PubMed: 10334441]
Grundfest WS, et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J Am Coll Cardiol. 1985; 5:929–933. [PubMed: 3838324]
Proebstle TM, Moehler T, Herdemann S. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: Definition of a threshold for the endovenous fluence equivalent. J Vasc Surg. 2006; 44:834–839. [PubMed: 16945499]
Confocal laser scanning microscope, Raman microscopy and Western blotting to evaluate inflammatory response after myocardial infarction, Irene Riezzo, Santina, antatore, Dania DeCarlo, Carmela Fiore, Margherita Neri, Emanuela Turillazzi, Vittorio Fineschi, Curr Vasc Pharmacol 2015;13(1):78-90. doi: 10.2174/15701611113119990004.
Confocal microscopy imaging of the biofilm matrix, Sebastian Schlafer , Rikke L Meyer, J Microbiol Methods, 2017 Jul;138:50-59. doi: 10.1016/j.mimet.2016.03.002
Confocal Microscopy: Principles and Modern Practices, Amicia D. Elliott, Curr Protoc Cytom. 2020 March ; 92(1): e68. doi:10.1002/cpcy.68.
Lipson, R. L., Baldes, E. J. Hematoporphyrin Derivative: A New Aid for Endoscopic Detection of Malignant Disease. J. Thorac.Cardiovasc. Surg. 42, 623-629 (1961).
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889-905.
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380-387.
Dougherty, T. J., Henderson, B. W., Schwartz, S., Winkelman, J. W., Lipson, R. L. In Historical Perspective in Photodynamic Therapy, pp. 1-18, Eds., B. W. Henderson and T. J. Dougherty. Maurice Dekker, New York (1992).
Photodynamic Therapy of Cancer: An Update, Patrizia Agostinis, Kristian Berg, Keith A. Cengel, Thomas H. Foster, Albert W. Girotti, Sandra O. Gollnick, Stephen M. Hahn, Michael R. Hamblin, Asta Juzeniene, David Kessel, Mladen Korbelik, Johan Moan, Pawel Mroz, Dominika Nowis, Jacques Piette, Brian C. Wilson, Jakub Golab, CA CANCER J CLIN 2011;61:250–281].
A Review of Progress inClinical Photodynamic Therapy, Zheng Huang, Technology in Cancer Research & Treatmen, Volume 4, Number 3, June (2005), 283-293.
Schmidt, M. H., Bajic, D. M., Reichert, K. W. II, Martin, T. S.,Meyer, G. A., Whelan, H. T. Light-emitting Diodes as a Light Source for Intraoperative Photodynamic Therapy. Neurosurgery 38, 552- 556 (1996).
Lustig, R. A., Vogl, T. J., Fromm, D., Cuenca, R., His, A. R., D’Cruz, A. K., Krajina, Z., Turic, M., Singhal, A., Chen, J. C. AMulticenter Phase I Safety Study of Intratumoral Photoactivation of Talaporfin Sodium in Patients with Refractory Solid Tumors. Cancer 98, 1767-1771 (2003).
Chen, J., Keltner, L., Christophersen, J., Zheng, F., Krouse, M., Singhal, A., Wang, S. S. New Technology for Deep Light Distribution in Tissue for Phototherapy. Cancer J. 8, 154-163 (2002).
Juzeniene, A., Juzenas, P., Ma, L. W., Iani, V., Moan, J. Effectiveness of Different Light Sources for 5-aminolevulinic Acid Photodynamic Therapy. Lasers Med. Sci. 19, 139-149 (2004).
Mang, T. S. Lasers and Light Sources for PDT: Past, Present and Future. Photodiag. Photodyn. Therapy 1, 43-48 (2004).
Hung, Y.; Chen, Y.; Ng, S.; Liu, L.; Huang, Y.; Luk, B.; Ip, R.; Wu, C.; Chung, P. Review and comparison of shearography and active thermography for nondestructive evaluation. Mater. Sci. Eng. R Rep. 2009, 64, 73–112.
Holman JP (1986) Heat Transfer McGraw Hill, New York.
Porter W, Gates DG (1969) Thermodynamic equilibria of animals with environment. Ecol Monog 39: 227-244
Hottel C (1954) Radiant heat transmission. In: McAdams WH (ed) Heat Transmission. 3rd Ed. McGraw Hill New York
Vollmer, M.; M¨ollmann, K.P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley: Weinheim, Germany, 2011.
Zissis, G.J.; Wolfe, W.L. The Infrared Handbook. Technical report, DTIC document, 1978.
Gaussorgues, G. Infrared Thermography; Springer: Berlin/Heidelberg, Germany, 1994.
Amalu, W.C. A Review of Breast Thermography. Available online: http://www.iact-org.org/downloads/a-review-of-bc.pdf (accessed on 4 July 2014).
Ring, F. Thermal imaging today and its relevance to diabetes. J. Diabetes Sci. Technol. 2010, 4, 857–862.
Nguyen, A.V.; Cohen, N.J.; Lipman, H.; Brown, C.M.; Molinari, N.A.; Jackson, W.L.;Kirking, H.; Szymanowski, P.; Wilson, T.W.; Salhi, B.A.; et al. Comparison of 3 infraredthermal detection systems and self-report for mass fever screening. Emerg. Infect. Dis. 2010,16, 1710–1717.
Vargas, J.; Brioschi, M.; Dias, F.; Parolin, M.; Mulinari-Brenner, F.; Ordonez, J.; Colman, D.Normalized methodology for medical infrared imaging. Infrared Phys. Technol. 2009, 52,42–47.
Fikackova, H.; Ekberg, E. Can infrared thermography be a diagnostic tool for arthralgia of the temporomandibular joint? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2004,98, 643–650.
Manginas, A.; Andreanides, E.; Leontiadis, V.; Sfyrakis, P.; Maounis, T.; Degiannis, D.;Alivizatos, P.A.; Cokkinos, D.V. Right ventricular endocardial thermography in transplanted and coronary artery disease patients: First human application. J. Invasive Cardiol. 2010, 22, 400–404.
Wiecek, B. Review on thermal image processing for passive and active thermography. In Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology, Shanghai, China, 1–4 September 2005; pp. 686–689
Ibarra-Castanedo, C.; Genest, M.; Piau, J.M.; Guibert, S.; Bendada, A.; Maldague, X.P.; Chen, C. Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization. In Active Infrared Thermography Techniques for the Non-Destructive Testing of Materials; Chen, C.H., Ed.; World Scientific: Singapore, Singapore, 2007; pp. 325–348.
Cantor, C.R.; Shimmel, P.R. Biophysical Chemistry: Part II. Techniques for the Study of Biological Structure and Function; W.H. Freeman and Company: New York, 1980; 468–469.
Carey, P.R. Biochemical Applications of Raman and Resonance Raman Spectroscopies; Academic Press: New York, 1982; 97
Parker, F.S. Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry; Plenum Press: 1984; Chap. 3.
Diem, M. Introduction to Modern Vibrational Spectroscopy; John Wiley and Sons: New York, 1993; 204–235, Chap. 8.
Mahadevan-Jansen, A.; Richards-Kortum, R. Raman spectroscopy for the detection of cancer and precancers. J. Biomed. Opt. 1996, 1, 31–70.
Le Gal, J.-M.; Manfait, M.; Theophanides, T. Applications of FTIR spectroscopy in structural studies of cells and bacteria. J. Mol. Struct. 1991, 242, 397–407.
Pouchert, C.J. The Aldrich Library of FT-IR Spectra, 1st Ed.; Aldrich Chemical Company, 1985; Vol. 1.
Buschman, H.P.; Marple, E.T.; Wach, M.L.; Bennett, B.; Bakker Schut, T.C.; Bruining, H.A.; Bruschke, A.V.; van der Laarse, A.; Puppels, G.J. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal. Chem. 2000, 72, 3771–3775.
Stokes, G.G. On the change of refrangibility of light. Philos. Trans. R. Soc. Lond. 1852, 142, 463–562.
Wang, Y.L. Fluorescence Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs,Labelling Cells, and Basic Microscopy. Methods in Cell Biology; Academic Press: San Diego, State abbr., USA, 1989; Volume 29.
Lakowicz, J.R.; Szmacinski, H.; Nowaczyk, K.; Berndt, K.W.; Johnson, M. fluorescence lifetime imaging. Anal. Biochem. 1992, 202, 316–230.
Hellen C. Ishikawa-Ankerhold 1,†,*, Richard Ankerhold 2 and Gregor P. C. Drummen, “Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM Molecules 2012, 17, 4047-4132
Lane PM, Gilhuly T, Whitehead P, Zeng H, Poh CF, Ng S, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006; 11: 024006.
Drezek R, Brookner C, Pavlova I, Boiko I, Malpica A, Lotan R, et al. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol. 2001; 73: 636-641.
Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem Photobiol. 2003; 77: 550-555.
Crane LM, Themelis G, Pleijhuis RG, Harlaar NJ, Sarantopoulos A, Arts HJ, et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol. 2011; 13: 1043-1049.
Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008; 14: 2396-2404.
Poh CF, Ng SP, Williams PM, Zhang L, Laronde DM, Lane P, et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck. 2007; 29: 71-76.
Downloads
Posted
Section
Categories
License
Copyright (c) 2023 Darakhshan Qaiser, Piyush Ranjan, Anurag Srivastava
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Any non-commercial use, distribution, adaptation, and reproduction in any medium is permitted as long as the original work is properly cited. However, caution and responsibility are required when reusing as the articles on the preprint server are not peer-reviewed. Readers are advised to check for the availability of any updated or peer-reviewed version.